Abstract
AbstractIn this paper, we study the effect of Hardy potential on the existence or nonexistence of solutions to the following fractional problem involving a singular nonlinearity:
$$\begin{aligned} \textstyle\begin{cases} (-\Delta )^{s} u = \lambda \frac{u}{ \vert x \vert ^{2s}} + \frac{\mu }{u^{\gamma }}+f & \text{in } \Omega, \\ u>0 & \text{in } \Omega, \\ u=0 & \text{in } (\mathbb{R}^{N} \setminus \Omega ). \end{cases}\displaystyle \end{aligned}$$
{
(
−
Δ
)
s
u
=
λ
u
|
x
|
2
s
+
μ
u
γ
+
f
in
Ω
,
u
>
0
in
Ω
,
u
=
0
in
(
R
N
∖
Ω
)
.
Here $0 < s<1$
0
<
s
<
1
, $\lambda >0$
λ
>
0
, $\gamma >0$
γ
>
0
, and $\Omega \subset \mathbb{R}^{N}$
Ω
⊂
R
N
($N > 2s$
N
>
2
s
) is a bounded smooth domain such that $0 \in \Omega $
0
∈
Ω
. Moreover, $0 \leq \mu,f \in L^{1}(\Omega )$
0
≤
μ
,
f
∈
L
1
(
Ω
)
. For $0< \lambda \leq \Lambda _{N,s}$
0
<
λ
≤
Λ
N
,
s
, $\Lambda _{N,s}$
Λ
N
,
s
being the best constant in the fractional Hardy inequality, we find a necessary and sufficient condition for the existence of a positive weak solution to the problem with respect to the data μ and f. Also, for a regular datum of f, under suitable assumptions, we obtain some existence and uniqueness results and calculate the rate of growth of solutions. Moreover, we mention a nonexistence and a complete blowup result for the case $\lambda > \Lambda _{N,s}$
λ
>
Λ
N
,
s
. Besides, we consider the parabolic equivalence of the above problem in the case $\mu \equiv 1$
μ
≡
1
and some suitable $f(x,t)$
f
(
x
,
t
)
, that is,
$$\begin{aligned} \textstyle\begin{cases} u_{t}+(-\Delta )^{s} u = \lambda \frac{u}{ \vert x \vert ^{2s}} + \frac{1}{u^{\gamma }}+f(x,t) & \text{in } \Omega \times (0,T), \\ u>0 & \text{in } \Omega \times (0,T), \\ u =0 & \text{in } (\mathbb{R}^{N} \setminus \Omega ) \times (0,T), \\ u(x,0)=u_{0} & \text{in } \mathbb{R}^{N}, \end{cases}\displaystyle \end{aligned}$$
{
u
t
+
(
−
Δ
)
s
u
=
λ
u
|
x
|
2
s
+
1
u
γ
+
f
(
x
,
t
)
in
Ω
×
(
0
,
T
)
,
u
>
0
in
Ω
×
(
0
,
T
)
,
u
=
0
in
(
R
N
∖
Ω
)
×
(
0
,
T
)
,
u
(
x
,
0
)
=
u
0
in
R
N
,
where $u_{0} \in X_{0}^{s}(\Omega )$
u
0
∈
X
0
s
(
Ω
)
satisfies an appropriate cone condition. In the case $0<\gamma \leq 1$
0
<
γ
≤
1
or $\gamma >1$
γ
>
1
with $2s(\gamma -1)<(\gamma +1)$
2
s
(
γ
−
1
)
<
(
γ
+
1
)
, we show the existence of a unique solution for any $0< \lambda < \Lambda _{N,s}$
0
<
λ
<
Λ
N
,
s
and prove a stabilization result for certain range of λ.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fractional heat equation with singular nonlinearity;Journal of Pseudo-Differential Operators and Applications;2022-09-16