Abstract
AbstractThis article investigates the local well-posedness of Turing-type reaction–diffusion equations with Robin boundary conditions in the Sobolev space. Utilizing the Hadamard norm, we derive estimates for Fokas unified transform solutions for linear initial-boundary value problems subject to external forces. Subsequently, we demonstrate that the iteration map, defined by the unified transform solutions and incorporating nonlinearity instead of external forces, acts as a contraction map within an appropriate solution space. Our conclusive result is established through the application of the contraction mapping theorem.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献