Abstract
AbstractThe object of this paper is to develop an accurate combined spectral collocation approach to numerically solve the generalized nonlinear Benjamin–Bona–Mahony–Burgers equation. The first stage is devoted to discretization in time, which is carried out with the aid of the well-known Taylor series expansions. Then the spectral collocation procedure based on the Boubaker polynomials is applied for the resulting discretized spatial operator in each time step. A detailed error analysis of the presented technique is carried out with regard to the space variable. The advantages of the hybrid technique are shown via performing several simulations through four test examples. Comparisons between our numerical results and the outcomes of some existing schemes indicate that the proposed technique is not only simple and easy-to-implement, but also sufficiently accurate using a moderate number of bases and a large time step.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference58 articles.
1. Mei, M.: Large-time behavior of solution for generalized Benjamin–Bbona–Mahony–Burgers equations. Nonlinear Anal. 33, 699–714 (1998)
2. Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. A 272, 47–78 (1972)
3. Peregrine, D.H.: Calculations of the development of an undular bore. J. Fluid Mech. 25, 321–330 (1966)
4. Izadi, M., Yüzbasbi, S., Baleanu, D.: A Taylor–Chebyshev approximation technique to solve the 1D and 2D nonlinear Burgers equations. Math. Sci. (2021). https://doi.org/10.1007/s40096-021-00433-1
5. Bona, J.L.: Model equations for waves in nonlinear dispersive systems. In: Proc. Int. Congress of Mathematicians, Helsinki, vol. 2, pp. 887–894 (1978)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献