Author:
Sun Jian-Ping,Fang Li,Zhao Ya-Hong,Ding Qian
Abstract
AbstractIn this paper, we consider the existence and uniqueness of solutions for the following nonlinear multi-order fractional differential equation with integral boundary conditions $$ \textstyle\begin{cases} ({}^{C}D_{0+}^{\alpha}u)(t)+\sum_{i=1}^{m}\lambda _{i}(t)({}^{C}D_{0+}^{\alpha _{i}}u)(t)+ \sum_{j=1}^{n}\mu _{j}(t)({}^{C}D_{0+}^{\beta _{j}}u)(t)\\ \quad{}+\sum_{k=1}^{p}\xi _{k}(t)({}^{C}D_{0+}^{\gamma _{k}}u)(t)+\sum_{l=1}^{q}\omega _{l}(t)({}^{C}D_{0+}^{\delta _{l}}u)(t)\\ \quad{}+\sigma (t)u(t)+f(t,u(t))=0,\quad t\in [0,1],\\ u^{\prime \prime}(0)=u^{\prime \prime \prime}(0)=0,\qquad u^{\prime}(0)=\eta _{1}\int _{0}^{1}u(s)\,ds,\qquad u(1)=\eta _{2}\int _{0}^{1}u(s)\,ds, \end{cases} $$
{
(
C
D
0
+
α
u
)
(
t
)
+
∑
i
=
1
m
λ
i
(
t
)
(
C
D
0
+
α
i
u
)
(
t
)
+
∑
j
=
1
n
μ
j
(
t
)
(
C
D
0
+
β
j
u
)
(
t
)
+
∑
k
=
1
p
ξ
k
(
t
)
(
C
D
0
+
γ
k
u
)
(
t
)
+
∑
l
=
1
q
ω
l
(
t
)
(
C
D
0
+
δ
l
u
)
(
t
)
+
σ
(
t
)
u
(
t
)
+
f
(
t
,
u
(
t
)
)
=
0
,
t
∈
[
0
,
1
]
,
u
″
(
0
)
=
u
‴
(
0
)
=
0
,
u
′
(
0
)
=
η
1
∫
0
1
u
(
s
)
d
s
,
u
(
1
)
=
η
2
∫
0
1
u
(
s
)
d
s
,
where $0<\delta _{1}<\delta _{2}<\cdots <\delta _{q}<1<\gamma _{1}<\gamma _{2}<\cdots <\gamma _{p}<2<\beta _{1}<\beta _{2}<\cdots <\beta _{n}<3<\alpha _{1}<\alpha _{2}<\cdots <\alpha _{m}<\alpha <4$
0
<
δ
1
<
δ
2
<
⋯
<
δ
q
<
1
<
γ
1
<
γ
2
<
⋯
<
γ
p
<
2
<
β
1
<
β
2
<
⋯
<
β
n
<
3
<
α
1
<
α
2
<
⋯
<
α
m
<
α
<
4
and $\eta _{1}+2(1-\eta _{2})\neq 0$
η
1
+
2
(
1
−
η
2
)
≠
0
. Using a fixed point theorem and Banach contractive mapping principle, we obtain some existence and uniqueness results.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference28 articles.
1. Il’in, V.A., Moiseev, E.I.: Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects. Differ. Equ. 23(7), 803–810 (1987)
2. Il’in, V.A., Moiseev, E.I.: Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator. Differ. Equ. 23(8), 979–987 (1987)
3. Gupta, C.P.: Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation. J. Math. Anal. Appl. 168, 540–551 (1992)
4. Columbu, A., Frassu, S., Viglialoro, G.: Refined criteria toward boundedness in an attraction-repulsion chemotaxis system with nonlinear productions. Appl. Anal. (2023). https://doi.org/10.1080/00036811.2023.2187789
5. Li, T., Frassu, S., Viglialoro, G.: Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption. Z. Angew. Math. Phys. 74(3), 109 (2023)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献