Abstract
AbstractFor the nonlinear predator–prey system (PPS), although a variety of numerical methods have been proposed, such as the difference method, the finite element method, and so on, but the efficient numerical method has always been the direction that scholars strive to pursue. Based on this question, a sinc function interpolation method is proposed for a class of PPS. Numerical simulations of a class of PPS with complex dynamical behaviors are performed. Time series plots and phase diagrams of a class of PPS without self-diffusion are shown. The pattern is obtained by setting up different initial conditions and the parameters in the system according to Turing bifurcation condition. The numerical simulation results have a good agreement with theoretical results. Simulation results show the effectiveness of the method.
Funder
Natural Science Foundation of Inner Mongolia
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference33 articles.
1. Khajanchi, S.: Dynamic behavior of a Beddington–DeAngelis type stage structured predator–prey model. Appl. Math. Comput. 244, 344–360 (2014)
2. Khajanchi, S.: Modeling the dynamics of stage-structure predator–prey system with Monod–Haldane type response function. Appl. Math. Comput. 302, 122–143 (2017)
3. Banshidhar, S., Poria, S.: Dynamics of predator–prey system with fading memory. Appl. Math. Comput. 347, 319–333 (2019)
4. Gakkhar, S., Singh, B.: Dynamics of modified Leslie–Gower-type prey–predator model with seasonally varying parameters. Chaos Solitons Fractals 27, 1239–1255 (2006)
5. Paul, P., Ghosh, B., Kar, T.K.: Impact of species enrichment and fishing mortality in three species food chain models. Commun. Nonlinear Sci. Numer. Simul. 29, 208–223 (2015)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献