Abstract
Abstract
In this paper, we consider the following nonlinear problem with general nonlinearity and nonlocal convolution term:
$$ \textstyle\begin{cases} -\Delta u+V(x)u+(I_{\alpha }\ast \vert u \vert ^{q}) \vert u \vert ^{q-2}u=f(u), \quad x\in {\mathbb{R}}^{3}, \\ u\in H^{1}(\mathbb{R}^{3}), \quad \end{cases} $$
{
−
Δ
u
+
V
(
x
)
u
+
(
I
α
∗
|
u
|
q
)
|
u
|
q
−
2
u
=
f
(
u
)
,
x
∈
R
3
,
u
∈
H
1
(
R
3
)
,
where $a\in (0,3)$
a
∈
(
0
,
3
)
, $q\in [1+\frac{\alpha }{3},3+\alpha )$
q
∈
[
1
+
α
3
,
3
+
α
)
, $I_{\alpha }:\mathbb{R}^{3}\rightarrow \mathbb{R}$
I
α
:
R
3
→
R
is the Riesz potential, $V\in \mathcal{C}(\mathbb{R}^{3},[0,\infty ))$
V
∈
C
(
R
3
,
[
0
,
∞
)
)
, $f\in \mathcal{C}(\mathbb{R},\mathbb{R})$
f
∈
C
(
R
,
R
)
and $F(t)=\int _{0}^{t}f(s)\,ds$
F
(
t
)
=
∫
0
t
f
(
s
)
d
s
satisfies $\lim_{|t|\to \infty }F(t)/|t|^{\sigma }=\infty $
lim
|
t
|
→
∞
F
(
t
)
/
|
t
|
σ
=
∞
with $\sigma =\min \{2,\frac{2\beta +2}{\beta }\}$
σ
=
min
{
2
,
2
β
+
2
β
}
where $\beta =\frac{ \alpha +2}{2(q-1)}$
β
=
α
+
2
2
(
q
−
1
)
. By using new analytic techniques and new inequalities, we prove the above system admits a ground state solution under mild assumptions on V and f.
Funder
NNSF
Hunan Provincial Natural Science Foundation of China
Scientific Research Fund of Hunan Provincial Education Department
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis