Estradiol increases risk of topoisomerase IIβ-mediated DNA strand breaks to initiate Xp11.2 translocation renal cell carcinoma

Author:

Shi Qiancheng,Liu Ning,Yang Lei,Chen Yi,Lu Yanwen,Guo Hongqian,Han Xiaodong,Li Dongmei,Gan WeidongORCID

Abstract

Abstract Background Xp11.2 translocation renal cell carcinoma (tRCC) is defined by translocation of the transcription factor E3 (TFE3) gene located on chromosome Xp11.2. Due to the high incidence in women, 17β-estradiol (E2) may be a factor influencing TFE3 breaks, and the topoisomerase II (TOP2) poison is considered one of the important risk factors in mediating DNA breaks. In this study, we investigated the potential pathogenesis of Xp11.2 tRCC using the renal epithelial cell line HK-2. Methods Immunofluorescence assay was performed to analyze DNA breaks by quantifying phosphorylation of H2AX (γH2AX), and the micronuclei (MN) assay was designed for monitoring chromosome breaks. The chromatin immunoprecipitation (CHIP) was used to detect whether proteins bound to specific DNA site, and the co-immunoprecipitation (Co-IP) was used to confirm whether proteins bound to other proteins. In some experiments, siRNA and shRNA were transfected to knockdown target genes. Results Our results demonstrated that DNA double-strand breaks were mediated by TOP2β in HK-2 cells, and this process could be amplified through estrogen receptor α (ERα)-dependent pathway induced by E2. After performing translocation site analysis using target region sequencing data in two Xp11.2 tRCC cell lines and ten Xp11.2 tRCC patients, we confirmed that TOP2β and ERα could both bind to TFE3 translocation sites directly to mediate DNA breaks in a E2-dependent manner. However, TOP2β and ERα were not observed to have direct interaction, indicating that their collaborative may be implemented in other ways. Besides, TFE3 was found to be upregulated through NRF1 with increasing E2 concentration, which could increase the risk of TFE3 breaks. Conclusion Our results indicate that E2 amplifies TOP2β-mediated TFE3 breaks by ERα-dependent pathway, and E2 upregulates TFE3 by NRF1 to increase the risk of TFE3 breaks. This suggests that E2 is an important pathogenic factor for Xp11.2 tRCC pathogenesis.

Funder

State Key Laboratory of Analytical Chemistry for Life Sciences

Beijing Ronghe Medical Development Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3