Author:
Wang Qianwen,Qi Chenxiang,Min Pengxiang,Wang Yueyuan,Ye Fengwen,Xia Tianxiang,Zhang Yujie,Du Jun
Abstract
Abstract
Background
Gastric cancer is a common and lethal human malignancy worldwide and cancer cell metastasis is the leading cause of cancer-related mortality. MICAL2, a flavoprotein monooxygenase, is an important regulator of epithelial-to-mesenchymal transition. The aim of this study was to explore the effects of MICAL2 on gastric cancer cell migration and determine the underlying molecular mechanisms.
Methods
Cell migration was examined by wound healing and transwell assays. Changes in E-cadherin/β-catenin signaling were determined by qPCR and analysis of cytoplasmic and nuclear protein fractions. E-cadherin/β-catenin binding was determined by co-immunoprecipitation assays. Cdc42 activity was examined by pulldown assay.
Results
MICAL2 was highly expressed in gastric cancer tissues. The knockdown of MICAL2 significantly attenuated migratory ability and β-catenin nuclear translocation in gastric cancer cells while LiCl treatment, an inhibitor of GSK3β, reversed these MICAL2 knockdown-induced effects. Meanwhile, E-cadherin expression was markedly enhanced in MICAL2-depleted cells. MICAL2 knockdown led to a significant attenuation of E-cadherin ubiquitination and degradation in a Cdc42-dependent manner, then enhanced E-cadherin/β-catenin binding, and reduced β-catenin nuclear translocation.
Conclusions
Together, our results indicated that MICAL2 promotes E-cadherin ubiquitination and degradation, leading to enhanced β-catenin signaling via the disruption of the E-cadherin/β-catenin complex and, consequently, the promotion of gastric cell migration.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献