Abstract
Abstract
Background
Cryptococcus neoformans (C. neoformans) is an encapsulated budding yeast that causes life-threatening meningoencephalitis in immunocompromised individuals, especially those with acquired immunodeficiency syndrome (AIDS). To cause meningoencephalitis, C. neoformans circulating in the bloodstream must first be arrested in the brain microvasculature. Neutrophils, the most abundant phagocytes in the bloodstream and the first leukocytes to be recruited to an infection site, can ingest C. neoformans. Little is known about how neutrophils interact with arrested fungal cells in the brain microvasculature.
Methods
A blood-brain barrier (BBB) in vitro model was established. The interactions between neutrophils adhering to brain endothelial cells and fungi were observed under a live cell imaging microscope. A flow cytometry assay was developed to explore the mechanisms. Immunofluorescence staining of brain tissues was utilized to validate the in vitro phenomena.
Results
Using real-time imaging, we observed that neutrophils adhered to a monolayer of mouse brain endothelial cells could expel ingested C. neoformans without lysis of the neutrophils or fungi in vitro, demonstrating nonlytic exocytosis of fungal cells from neutrophils. Furthermore, nonlytic exocytosis of C. neoformans from neutrophils was influenced by either the fungus (capsule and viability) or the neutrophil (phagosomal pH and actin polymerization). Moreover, nonlytic exocytosis of C. neoformans from neutrophils was recorded in brain tissue.
Conclusion
These results highlight a novel function by which neutrophils extrude C. neoformans in the brain vasculature.
Graphical abstract
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology,Biochemistry
Reference40 articles.
1. Kwon-Chung KJ, Sorrell TC, Dromer F, Fung E, Levitz SM. Cryptococcosis: clinical and biological aspects. Med Mycol. 2000;38(Suppl 1):205–13.
2. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 2017;17(8):873–81.
3. Fang W, Chen M, Liu J, Hagen F, Ms A, Al H, et al. Cryptococcal meningitis in systemic lupus erythematosus patients: pooled analysis and systematic review. Emerg Microbes Infect. 2016;5(9):e95.
4. Mete B, Saltoglu N, Vanli E, Ozkara C, Arslan F, Mert A, et al. Simultaneous cryptococcal and tuberculous meningitis in a patient with systemic lupus erythematosus. J Microbiol Immunol Infect. 2016;49(2):289–94.
5. Chen M, Al-Hatmi AM, Chen Y, Ying Y, Fang W, Xu J, et al. Cryptococcosis and tuberculosis co-infection in mainland China. Emerg Microbes Infect. 2016;5(9):e98.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献