Polyploidy and mTOR signaling: a possible molecular link

Author:

Choudhury Debopriya,Ghosh Dhruba,Mondal Meghna,Singha Didhiti,Pothuraju Ramesh,Malakar Pushkar

Abstract

AbstractPolyploidy is typically described as the condition wherein a cell or organism has more than two complete sets of chromosomes. Occurrence of polyploidy is a naturally occurring phenomenon in the body’s development and differentiation processes under normal physiological conditions. However, in pathological conditions, the occurrence of polyploidy is documented in numerous disorders, including cancer, aging and diabetes. Due to the frequent association that the polyploidy has with these pathologies and physiological process, understanding the cause and consequences of polyploidy would be beneficial to develop potential therapeutic applications. Many of the genetic and epigenetic alterations leading to cancer, diabetes and aging are linked to signaling pathways. Nonetheless, the specific signaling pathway associated with the cause and consequences of polyploidy still remains largely unknown. Mammalian/mechanistic target of rapamycin (mTOR) plays a key role in the coordination between eukaryotic cell growth and metabolism, thereby simultaneously respond to various environmental inputs including nutrients and growth factors. Extensive research over the past two decades has established a central role for mTOR in the regulation of many fundamental cellular processes that range from protein synthesis to autophagy. Dysregulated mTOR signaling has been found to be implicated in various disease progressions. Importantly, there is a strong correlation between the hallmarks of polyploidy and dysregulated mTOR signaling. In this review, we explore and discuss the molecular connection between mTOR signaling and polyploidy along with its association with cancer, diabetes and aging. Additionally, we address some unanswered questions and provide recommendations to further advance our understanding of the intricate relationship between mTOR signaling and polyploidy.

Funder

Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3