Exogenous fibroblast growth factor 1 ameliorates diabetes-induced cognitive decline via coordinately regulating PI3K/AKT signaling and PERK signaling

Author:

Wu Yanqing,Wu Chengbiao,Ye Libing,Wang Beini,Yuan Yuan,Liu Yaqian,Zheng Peipei,Xiong Jun,Li Yiyang,Jiang Ting,Li Xiaokun,Xiao JianORCID

Abstract

Abstract Background Diabetes induces central nervous system damage, leading to cognitive decline. Fibroblast growth factor 1 (FGF1) has dual function of neuroprotection and normalizing hyperglycemia. To date, the precise mechanisms and potential treating strategies of FGF1 for diabetes-induced cognitive decline (DICD) hasn’t been fully elucidated. Methods In this study, db/db mice were used as DICD animal model. We found that diabetes remarkably suppressed FGF1 expression in hippocampus. Thus, exogenous FGF1 had been treated for db/db mice and SH-SY5Y cells. Results FGF1 significantly ameliorates DICD with better spatial learning and memory function. Moreover, FGF1 blocked diabetes-induced morphological structure change, neuronal apoptosis and Aβ1–42 deposition and synaptic dysfunction in hippocampus. But normalizing glucose may not the only contributed factor for FGF1 treating DICD with evidencing that metformin-treated db/db mice has a inferior cognitive function than that in FGF1 group. Current mechanistic study had found that diabetes inhibits cAMP-response element binding protein (CREB) activity and subsequently suppresses brain derived neurotrophic factor (BDNF) level via coordinately regulating PERK signaling and PI3K/AKT signaling in hippocampus, which were reversed by FGF1. Conclusion We conclude that FGF1 exerts its neuroprotective role and normalizing hyperglycemia effect, consequently ameliorates DICD, implying FGF1 holds a great promise to develop a new treatment for DICD.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3