Diverse roles of SARS-CoV-2 Spike and Nucleocapsid proteins in EndMT stimulation through the TGF-β-MRTF axis inhibited by aspirin

Author:

Ciszewski Wojciech M.,Woźniak Lucyna A.,Sobierajska Katarzyna

Abstract

Abstract Background The SARS-CoV-2 virus causes severe COVID-19 in one-fifth of patients. In addition to high mortality, infection may induce respiratory failure and cardiovascular complications associated with inflammation. Acute or prolonged inflammation results in organ fibrosis, the cause of which might be endothelial disorders arising during the endothelial-mesenchymal transition (EndMT). Methods HUVECs and HMEC-1 cells were stimulated with SARS-CoV-2 S (Spike) and N (Nucleocapsid) proteins, and EndMT induction was evaluated by studying specific protein markers via Western blotting. Wound healing and tube formation assays were employed to assess the potential of SARS-CoV-2 to stimulate changes in cell behaviour. MRTF nuclear translocation, ROS generation, TLR4 inhibitors, TGF-β-neutralizing antibodies, and inhibitors of the TGF-β-dependent pathway were used to investigate the role of the TGF-β-MRTF signalling axis in SARS-CoV-2-dependent EndMT stimulation. Results Both viral proteins stimulate myofibroblast trans-differentiation. However, the N protein is more effective at EndMT induction. The TGF-β-MRTF pathway plays a critical role in this process. The N protein preferentially favours action through TGF-β2, whose secretion is induced through TLR4-ROS action. TGF-β2 stimulates MRTF-A and MRTF-B nuclear translocation and strongly regulates EndMT. In contrast, the Spike protein stimulates TGF-β1 secretion as a result of ACE2 downregulation. TGF-β1 induces only MRTF-B, which, in turn, weakly regulates EndMT. Furthermore, aspirin, a common nonsteroidal anti-inflammatory drug, might prevent and reverse SARS-CoV-2-dependent EndMT induction through TGF-β-MRTF pathway deregulation. Conclusion The reported study revealed that SARS-CoV-2 infection induces EndMT. Moreover, it was demonstrated for the first time at the molecular level that the intensity of the EndMT triggered by SARS-CoV-2 infection may vary and depend on the viral protein involved. The N protein acts through TLR4-ROS-TGF-β2-MRTF-A/B, whereas the S protein acts through ACE2-TGF-β1-MRTF-B. Furthermore, we identified aspirin as a potential anti-fibrotic drug for treating patients with SARS-CoV-2 infection.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3