Abstract
Abstract
Background
Diabetes mellitus (DM) is considered to be a risk factor in carcinogenesis and progression, although the biological mechanisms are not well understood. Here we demonstrate that platelet-endothelial cell adhesion molecule 1 (PECAM-1) internalization drives β-catenin-mediated endothelial-mesenchymal transition (EndMT) to link DM to cancer.
Methods
The tumor microenvironment (TME) was investigated for differences between colon cancer with and without DM by mRNA-microarray analysis. The effect of DM on colon cancer was determined in clinical patients and animal models. Furthermore, EndMT, PECAM-1 and Akt/GSK-3β/β-catenin signaling were analyzed under high glucose (HG) and human colon cancer cell (HCCC) supernatant (SN) or coculture conditions by western and immunofluorescence tests.
Results
DM promoted the progression and EndMT occurrence of colon cancer (CC). Regarding the mechanism, DM induced PECAM-1 defection from the cytomembrane, internalization and subsequent accumulation around the cell nucleus in endothelial cells, which promoted β-catenin entry into the nucleus, leading to EndMT occurrence in CC with DM. Additionally, Akt/GSK-3β signaling was enhanced to inhibit the degradation of β-catenin, which regulates the process of EndMT.
Conclusions
PECAM-1 defects and/or internalization are key events for β-catenin-mediated EndMT, which is significantly boosted by enhanced Akt/GSK-3β signaling in the DM-associated TME. This contributes to the mechanism by which DM promotes the carcinogenesis and progression of CC.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献