Author:
Tang Yingyue,Thiess Lena,Weiler Sofia M. E.,Tóth Marcell,Rose Fabian,Merker Sabine,Ruppert Thomas,Schirmacher Peter,Breuhahn Kai
Abstract
Abstract
Background
Adherens junctions (AJs) facilitate cell–cell contact and contribute to cellular communication as well as signaling under physiological and pathological conditions. Aberrant expression of AJ proteins is frequently observed in human cancers; however, how these factors contribute to tumorigenesis is poorly understood. In addition, for some factors such as α‐catenin contradicting data has been described. In this study we aim to decipher how the AJ constituent α‐catenin contributes to liver cancer formation.
Methods
TCGA data was used to detect transcript changes in 23 human tumor types. For the detection of proteins, liver cancer tissue microarrays were analyzed by immunohistochemistry. Liver cancer cell lines (HLF, Hep3B, HepG2) were used for viability, proliferation, and migration analyses after RNAinterference-mediated gene silencing. To investigate the tumor initiating potential, vectors coding for α‐catenin and myristoylated AKT were injected in mice by hydrodynamic gene delivery. A BioID assay combined with mass spectrometry was performed to identify α‐catenin binding partners. Results were confirmed by proximity ligation and co-immunoprecipitation assays. Binding of transcriptional regulators at gene promoters was investigated using chromatin-immunoprecipitation.
Results
α‐catenin mRNA was significantly reduced in many human malignancies (e.g., colon adenocarcinoma). In contrast, elevated α‐catenin expression in other cancer entities was associated with poor clinical outcome (e.g., for hepatocellular carcinoma; HCC). In HCC cells, α‐catenin was detectable at the membrane as well as cytoplasm where it supported tumor cell proliferation and migration. In vivo, α‐catenin facilitated moderate oncogenic properties in conjunction with AKT overexpression. Cytokinesis regulator centrosomal protein 55 (CEP55) was identified as a novel α‐catenin-binding protein in the cytoplasm of HCC cells. The physical interaction between α‐catenin and CEP55 was associated with CEP55 stabilization. CEP55 was highly expressed in human HCC tissues and its overexpression correlated with poor overall survival and cancer recurrence. Next to the α‐catenin-dependent protein stabilization, CEP55 was transcriptionally induced by a complex consisting of TEA domain transcription factors (TEADs), forkhead box M1 (FoxM1), and yes-associated protein (YAP). Surprisingly, CEP55 did not affect HCC cell proliferation but significantly supported migration in conjunction with α‐catenin.
Conclusion
Migration-supporting CEP55 is induced by two independent mechanisms in HCC cells: stabilization through interaction with the AJ protein α‐catenin and transcriptional activation via the FoxM1/TEAD/YAP complex.
Funder
Chinese Scholarship Council
Deutsche Forschungsgemeinschaft
Medizinischen Fakultät Heidelberg, Universität Heidelberg
Medizinische Fakultät Heidelberg der Universität Heidelberg
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献