Bioinformatic analysis and preliminary validation of potential therapeutic targets for COVID-19 infection in asthma patients

Author:

Li Yue,Liu Ye,Duo Mengjie,Wu Ruhao,Jiang Tianci,Li Pengfei,Wang Yu,Cheng Zhe

Abstract

Abstract Background Severe acute respiratory syndrome coronavirus 2 causes coronavirus disease 19 (COVID-19). The number of confirmed cases of COVID-19 is also rapidly increasing worldwide, posing a significant challenge to human safety. Asthma is a risk factor for COVID-19, but the underlying molecular mechanisms of the asthma–COVID-19 interaction remain unclear. Methods We used transcriptome analysis to discover molecular biomarkers common to asthma and COVID-19. Gene Expression Omnibus database RNA-seq datasets (GSE195599 and GSE196822) were used to identify differentially expressed genes (DEGs) in asthma and COVID-19 patients. After intersecting the differentially expressed mRNAs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to identify the common pathogenic molecular mechanism. Bioinformatic methods were used to construct protein–protein interaction (PPI) networks and identify key genes from the networks. An online database was used to predict interactions between transcription factors and key genes. The differentially expressed long noncoding RNAs (lncRNAs) in the GSE195599 and GSE196822 datasets were intersected to construct a competing endogenous RNA (ceRNA) regulatory network. Interaction networks were constructed for key genes with RNA-binding proteins (RBPs) and oxidative stress-related proteins. The diagnostic efficacy of key genes in COVID-19 was verified with the GSE171110 dataset. The differential expression of key genes in asthma was verified with the GSE69683 dataset. An asthma cell model was established with interleukins (IL-4, IL-13 and IL-17A) and transfected with siRNA-CXCR1. The role of CXCR1 in asthma development was preliminarily confirmed. Results By intersecting the differentially expressed genes for COVID-19 and asthma, 393 common DEGs were obtained. GO and KEGG enrichment analyses of the DEGs showed that they mainly affected inflammation-, cytokine- and immune-related functions and inflammation-related signaling pathways. By analyzing the PPI network, we obtained 10 key genes: TLR4, TLR2, MMP9, EGF, HCK, FCGR2A, SELP, NFKBIA, CXCR1, and SELL. By intersecting the differentially expressed lncRNAs for COVID-19 and asthma, 13 common differentially expressed lncRNAs were obtained. LncRNAs that regulated microRNAs (miRNAs) were mainly concentrated in intercellular signal transduction, apoptosis, immunity and other related functional pathways. The ceRNA network suggested that there were a variety of regulatory miRNAs and lncRNAs upstream of the key genes. The key genes could also bind a variety of RBPs and oxidative stress-related genes. The key genes also had good diagnostic value in the verification set. In the validation set, the expression of key genes was statistically significant in both the COVID-19 group and the asthma group compared with the healthy control group. CXCR1 expression was upregulated in asthma cell models, and interference with CXCR1 expression significantly reduced cell viability. Conclusions Key genes may become diagnostic and predictive biomarkers of outcomes in COVID-19 and asthma.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3