The protective effects of pericyte-derived microvesicles on vascular endothelial functions via CTGF delivery in sepsis

Author:

Zhou Henan,Zheng Danyang,Wang Hongchen,Wu Yue,Peng Xiaoyong,Li Qinghui,Li TaoORCID,Liu Liangming

Abstract

Abstract Background It is well known that sepsis is a prevalent severe disease caused by infection and the treatment strategies are limited. Recently pericyte-derived microvesicles (PMVs) were confirmed to be therapeutic in many diseases, whether PMVs can protect vascular endothelial cell (VEC) injury is unknown. Methods Pericytes were extracted from the retina of newly weaned rats, and PMVs were collected after starvation and characterized by flow-cytometry and transmission electron microscopy. First, the effect of PMVs on pulmonary vascular function in septic rats was measured via intravenous administration with HE staining, immunofluorescence, and Elisa analysis. Then, PMVs were co-incubated with VECs in the presence of lipopolysaccharide (LPS), and observed the protective effect of PMVs on VECs. Next, the proteomic analysis and further Gene Ontology (GO) enrichment analysis were performed to analyze the therapeutic mechanism of PMVs, and the angiogenesis-related protein CTGF was highly expressed in PMVs. Finally, by CTGF upregulation and downregulation in PMV, the role of PMV-carried CTGF was investigated. Results PMVs restored the proliferation and angiogenesis ability of pulmonary VECs, and alleviated pulmonary vascular leakage in septic rats and LPS-stimulated VECs. Further study showed that PMVs delivered CTGF to VECs, and subsequently activated ERK1/2, and increased the phosphorylation of STAT3, thereby improving the function of VECs. The further study found CD44 mediated the absorption and internalization of PMVs to VECs, the anti-CD44 antibody inhibited the protective effect of PMVs. Conclusions PMVs may delivery CTGF to VECs, and promote the proliferation and angiogenesis ability by activating the CTGF-ERK1/2-STAT3 axis, thereby protecting pulmonary vascular function in sepsis. The therapeutic effect of PMVs was highly related to CD44-mediated absorption.

Funder

national natural science foundation of china

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3