Loss-of-function mutations in KEAP1 drive lung cancer progression via KEAP1/NRF2 pathway activation

Author:

Gong Meiling,Li Yan,Ye Xiaoping,Zhang Linlin,Wang Zhifang,Xu Xiaowen,Shen Yejing,Zheng Cuixia

Abstract

Abstract Background and purpose Targeted therapy and immunotherapy have led to dramatic change in the treatment of lung cancer, however, the overall 5-year survival rate of lung cancer patients is still suboptimal. It is important to exploit new potential of molecularly targeted therapies. High-frequency somatic mutations in KEAP1/NRF2 (27.9%) have been identified in lung squamous cell carcinoma. In this research, we explored the role of KEAP1 somatic mutations in the development of LSCC and whether a nuclear factor erythroid 2-related factor 2(NRF2) inhibitor be potential to target lung cancer carrying KEAP1/NRF2 mutations. Methods Lung cancer cell lines A549 and H460 with loss-of-function mutations in KEAP1 stably transfected with wild-type (WT) KEAP1 or somatic mutations in KEAP1 were used to investigate the functions of somatic mutations in KEAP1. Flow cytometry, plate clone formation experiments, and scratch tests were used to examine reactive oxygen species, proliferation, and migration of these cell lines. Results The expression of NRF2 and its target genes increased, and tumor cell proliferation, migration, and tumor growth were accelerated in A549 and H460 cells stably transfected with KEAP1 mutants compared to control cells with a loss-of-function KEAP1 mutation and stably transfected with WT KEAP1 in both in vitro and in vivo studies. The proliferation of A549 cell line trasfected with the R320Q KEAP1 mutant was inhibited more apparent than that of the A549 cell line trasfected with WT KEAP1 after treatment with NRF2 inhibitor ML385. Conclusion Somatic mutations of KEAP1 identified from patients with LSCC likely promote tumorigenesis mediated by activation of the KEAP1/NRF2 antioxidant stress response pathway. NRF2 inhibition with ML385 could inhibit the proliferation of tumor cells with KEAP1 mutation.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3