Author:
Wu Chengyan,Hu Li,Liu Bing,Zeng Xingyue,Ma Haixiang,Cao Yongkai,Li Huijun,Zhang Xiaohan
Abstract
Abstract
Background
Desensitization of G protein–coupled receptors (GPCRs) refers to the attenuation of receptor responsiveness by prolonged or intermittent exposure to agonists. The binding of β-arrestin to the cytoplasmic cavity of the phosphorylated receptor, which competes with the G protein, has been widely accepted as an extensive model for explaining GPCRs desensitization. However, studies on various GPCRs, including dopamine D2-like receptors (D2R, D3R, D4R), have suggested the existence of other desensitization mechanisms. The present study employed D2R/D3R variants with different desensitization properties and utilized loss-of-function approaches to uncover the mechanisms underlying GPCRs homologous desensitization, focusing on the signaling cascade that regulates the ubiquitination of AKT.
Results
AKT undergoes K8/14 ubiquitination by TRAF6, which occurs in the nucleus and promotes its membrane recruitment, phosphorylation and activation under receptor desensitization conditions. The nuclear entry of TRAF6 relies on the presence of the importin complex. Src regulates the nuclear entry of TRAF6 by mediating the interaction between TRAF6 and importin β1. Ubiquitinated AKT translocates to the plasma membrane where it associates with Mdm2 to phosphorylate it at the S166 and S186 residues. Thereafter, phosphorylated Mdm2 is recruited to the nucleus, resulting in the deubiquitination of β-Arr2. The deubiquitinated β-Arr2 then forms a complex with Gβγ, which serves as a biomarker for GPCRs desensitization. Like in D3R, ubiquitination of AKT is also involved in the desensitization of β2 adrenoceptors.
Conclusion
Our study proposed that the property of a receptor that causes a change in the subcellular localization of TRAF6 from the cytoplasm to the nucleus to mediate AKT ubiquitination could initiate the desensitization of GPCRs.
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, et al. Regulation of mu-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev. 2013;65(1):223–54.
2. Ferguson SS. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev. 2001;53(1):1–24.
3. Thomsen ARB, Plouffe B, Cahill TJ 3rd, Shukla AK, Tarrasch JT, Dosey AM, et al. GPCR-G protein-beta-Arrestin super-complex mediates sustained G protein signaling. Cell. 2016;166(4):907–19.
4. Pao CS, Benovic JL. Phosphorylation-independent desensitization of G protein-coupled receptors? Sci STKE. 2002;2002(153):pe42.
5. Carman CV, Parent JL, Day PW, Pronin AN, Sternweis PM, Wedegaertner PB, et al. Selective regulation of Galpha(q/11) by an RGS domain in the G protein-coupled receptor kinase, GRK2. J Biol Chem. 1999;274(48):34483–92.