mTOR may interact with PARP-1 to regulate visible light-induced parthanatos in photoreceptors

Author:

Pan Yi-Ran,Song Jing-Yao,Fan Bin,Wang Ying,Che Lin,Zhang Si-Ming,Chang Yu-Xin,He Chang,Li Guang-YuORCID

Abstract

Abstract Background Excessive light exposure is a detrimental environmental factor that plays a critical role in the pathogenesis of retinal degeneration. However, the mechanism of light-induced death of retina/photoreceptor cells remains unclear. The mammalian/mechanistic target of rapamycin (mTOR) and Poly (ADP-ribose) polymerase-1 (PARP-1) have become the primary targets for treating many neurodegenerative disorders. The aim of this study was to elucidate the mechanisms underlying light-induced photoreceptor cell death and whether the neuroprotective effects of mTOR and PARP-1 inhibition against death are mediated through apoptosis-inducing factor (AIF). Methods Propidium iodide (PI)/Hoechst staining, lentiviral-mediated short hairpin RNA (shRNA), Western blot analysis, cellular fraction separation, plasmid transient transfection, laser confocal microscopy, a mice model, electroretinography (ERG), and hematoxylin-eosin (H & E) staining were employed to explore the mechanisms by which rapamycin/3-Aminobenzamide (3AB) exert neuroprotective effects of mTOR/PARP-1 inhibition in light-injured retinas. Results A parthanatos-like death mechanism was evaluated in light-injured 661 W cells that are an immortalized photoreceptor-like cell line that exhibit cellular and biochemical feature characteristics of cone photoreceptor cells. The death process featured over-activation of PARP-1 and AIF nuclear translocation. Either PARP-1 or AIF knockdown played a significantly protective role for light-damaged photoreceptors. More importantly, crosstalk was observed between mTOR and PARP-1 signaling and mTOR could have regulated parthanatos via the intermediate factor sirtuin 1 (SIRT1). The parthanatos-like injury was also verified in vivo, wherein either PARP-1 or mTOR inhibition provided significant neuroprotection against light-induced injury, which is evinced by both structural and functional retinal analysis. Overall, these results elucidate the mTOR-regulated parthanatos death mechanism in light-injured photoreceptors/retinas and may facilitate the development of novel neuroprotective therapies for retinal degeneration diseases. Conclusions Our results demonstrate that inhibition of the mTOR/PARP-1 axis exerts protective effects on photoreceptors against visible-light–induced parthanatos. These protective effects are conducted by regulating the downstream factors of AIF, while mTOR possibly interacts with PARP-1 via SIRT1 to regulate parthanatos. Graphical Abstract Schematic diagram of mTOR interacting with PARP-1 to regulate visible light-induced parthanatos. Increased ROS caused by light exposure penetrates the nuclear membrane and causes nuclear DNA strand breaks. PARP-1 detects DNA breaks and synthesizes PAR polymers to initiate the DNA repair system that consumes a large amount of cellular NAD+. Over-production of PAR polymers prompts the release of AIF from the mitochondria and translocation to the nucleus, which leads to parthanatos. Activated mTOR may interact with PARP-1 via SIRT1 to regulate visible light-induced parthanatos.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3