CCM signaling complex (CSC) couples both classic and non-classic Progesterone receptor signaling

Author:

Abou-Fadel Johnathan,Jiang Xiaoting,Grajeda Brian,Padarti Akhil,Ellis Cameron C.,Flores Esmeralda,Cailing-De La O Alyssa-Marie D.,Zhang Jun

Abstract

Abstract Background Breast cancer, the most diagnosed cancer, remains the second leading cause of cancer death in the United States, and excessive Progesterone (PRG) or Mifepristone (MIF) exposure may be at an increased risk for developing breast cancer. PRG exerts its cellular responses through signaling cascades involving classic, non-classic, or combined responses by binding to either classic nuclear PRG receptors (nPRs) or non-classic membrane PRG receptors (mPRs). Currently, the intricate balance and switch mechanisms between these two signaling cascades remain elusive. Three genes, CCM1-3, form the CCM signaling complex (CSC) which mediates multiple signaling cascades. Methods Utilizing molecular, cellular, Omics, and systems biology approaches, we analyzed the relationship among the CSC, PRG, and nPRs/mPRs during breast cancer tumorigenesis. Results We discovered that the CSC plays an essential role in coupling both classic and non-classic PRG signaling pathways by mediating crosstalk between them, forming the CmPn (CSC-mPRs-PRG-nPRs) signaling network. We found that mPR-specific PRG actions (PRG + MIF) play an essential role in this CmPn network during breast cancer tumorigenesis. Additionally, we have identified 4 categories of candidate biomarkers (9 intrinsic, 2 PRG-inducible, 1 PRG-repressive, 1 mPR-specific PRG-repressive, and 2 mPR-responsive) for Luminal-A breast cancers during tumorigenesis and have confirmed the prognostic application of RPL13 and RPL38 as intrinsic biomarkers using a dual validation method. Conclusions We have discovered that the CSC plays an essential role in the CmPn signaling network for Luminal-A breast cancers with identification of two intrinsic biomarkers.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3