Novel neoplasms associated with syndromic pediatric medulloblastoma: integrated pathway delineation for personalized therapy

Author:

Georgescu Maria-Magdalena,Whipple Stephen G.,Notarianni Christina M.

Abstract

AbstractMedulloblastoma is the most common pediatric embryonal brain tumor, and may occur in cancer predisposition syndromes. We describe novel associations of medulloblastoma with atypical prolactinoma and dural high-grade sarcoma in Li-Fraumeni syndrome (LFS), and epidural desmoid fibromatosis in familial adenomatous polyposis (FAP)/Turcot syndrome. Genomic analysis showing XRCC3 alterations suggested radiotherapy as contributing factor to the progression of LFS-associated medulloblastoma, and demonstrated different mechanisms of APC inactivation in the FAP-associated tumors. The integrated genomic-transcriptomic analysis uncovered the growth pathways driving tumorigenesis, including the prolactin-prolactin receptor (PRLR) autocrine loop and Shh pathway in the LFS-associated prolactinoma and medulloblastoma, respectively, the Wnt pathway in both FAP-associated neoplasms, and the TGFβ and Hippo pathways in the soft tissue tumors, regardless of germline predisposition. In addition, the comparative analysis of paired syndromic neoplasms revealed several growth pathways susceptible to therapeutic intervention by PARP, PRLR, and selective receptor tyrosine kinase (RTK) inhibitors. These could target the defective DNA damage repair in the LFS-associated medulloblastoma, the prolactin autocrine loop in the atypical prolactinoma, the EPHA3/7 and ALK overexpression in the FAP-associated medulloblastoma, and the multi-RTK upregulation in the soft tissue neoplasms. This study presents the spatiotemporal evolution of novel neoplastic associations in syndromic medulloblastoma, and discusses the post-radiotherapy risk for secondary malignancies in syndromic pediatric patients, with important implications for the biology, diagnosis, and therapy of these tumors.

Funder

NeuroMarkers PLLC

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3