LncRNAH19 improves insulin resistance in skeletal muscle by regulating heterogeneous nuclear ribonucleoprotein A1

Author:

Gui Weiwei,Zhu Wei Fen,Zhu Yiyi,Tang Shengjie,Zheng Fenping,Yin Xueyao,Lin Xihua,Li Hong

Abstract

Abstract Background Skeletal muscle is essential for glucose and lipid metabolism. Growing evidence reveals the importance of long non-coding RNAs (LncRNAs) in metabolism. This study aimed to investigate the function of LncRNA H19 (H19) in lipid metabolism of skeletal muscle and its potential mechanisms. Methods Glucose tolerance, serum insulin and lipid content in serum and skeletal muscle were determined in control and H19-overexpressed db/db mice. Lipid metabolism was evaluated in H19-overexpressed or H19-silencing muscle cells by detecting lipid contents and mitochondria related functions. The underlying mechanisms were explored by RNA pull-down, mass spectrometry and RNA immunoprecipitation (RIP). Results H19 was downregulated in skeletal muscle of db/db mice. H19 overexpression in db/db mice inhibited lipid ectopic deposition in skeletal muscle, meanwhile improved glucose intolerance and insulin resistance as compared with control db/db mice treated with ad-GFP. Furthermore, overexpression of H19 reversed FFA-induced lipid accumulation and increased cellular respiration in muscle cells, while H19 knockdown exhibited opposite effects in muscle cells. Mechanistically, H19 interacted with heterogeneous nuclear ribonucleoprotein (hnRNPA1) which was validated by RNA pulldown and RIP analysis, which increased translation of fatty acid oxidation closely related genes PGC1a and CPT1b. Conclusion Our data suggest that overexpression of H19 ameliorates insulin resistance by reducing ectopic lipid accumulation in skeletal muscle. The possible underlying mechanisms are that overexpression of lncRNAH19 promotes fatty acids oxidation via targeting of hnRNPA1.

Funder

National Natural Science Foundation of China

Zhejiang Province Public Welfare Technology Application Research Project

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference55 articles.

1. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017;389(10085):2239–51.

2. Ighbariya A, Weiss R. Insulin resistance, Prediabetes, metabolic syndrome: what should every pediatrician know? J Clin Res Pediatr Endocrinol. 2017;9(Suppl 2):49–57.

3. Rehman K, Haider K, Jabeen K, Akash MSH. Current perspectives of oleic acid: regulation of molecular pathways in mitochondrial and endothelial functioning against insulin resistance and diabetes. Rev Endocr Metab Disord. 2020;21(4):631–43.

4. Tripathi BK, Srivastava AK. Diabetes mellitus: complications and therapeutics. Med Sci Monit. 2006;12(7):RA130–47.

5. Marycz K, Kornicka K, Grzesiak J, Smieszek A, Szlapka J. Macroautophagy and selective Mitophagy ameliorate Chondrogenic differentiation potential in adipose stem cells of equine metabolic syndrome: new findings in the field of progenitor cells differentiation. Oxidative Med Cell Longev. 2016;2016:3718468.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3