RRP9 promotes gemcitabine resistance in pancreatic cancer via activating AKT signaling pathway

Author:

Zhang Zhiqi,Yu Haitao,Yao Wenyan,Zhu Na,Miao Ran,Liu Zhiquan,Song Xuwei,Xue Chunhua,Cai Cheng,Cheng Ming,Lin Ke,Qi DachuanORCID

Abstract

Abstract Background Pancreatic cancer (PC) is a highly lethal malignancy regarding digestive system, which is the fourth leading factor of cancer-related mortalities in the globe. Prognosis is poor due to diagnosis at advanced disease stage, low rates of surgical resection, and resistance to traditional radiotherapy and chemotherapy. In order to develop novel therapeutic strategies, further elucidation of the molecular mechanisms underlying PC chemoresistance is required. Ribosomal RNA biogenesis has been implicated in tumorigenesis. Small nucleolar RNAs (snoRNAs) is responsible for post-transcriptional modifications of ribosomal RNAs during biogenesis, which have been identified as potential markers of various cancers. Here, we investigate the U3 snoRNA-associated protein RRP9/U3-55 K along with its role in the development of PC and gemcitabine resistance. Methods qRT-PCR, western blot and immunohistochemical staining assays were employed to detect RRP9 expression in human PC tissue samples and cell lines. RRP9-overexpression and siRNA-RRP9 plasmids were constructed to test the effects of RRP9 overexpression and knockdown on cell viability investigated by MTT assay, colony formation, and apoptosis measured by FACS and western blot assays. Immunoprecipitation and immunofluorescence staining were utilized to demonstrate a relationship between RRP9 and IGF2BP1. A subcutaneous xenograft tumor model was elucidated in BALB/c nude mice to examine the RRP9 role in PC in vivo. Results Significantly elevated RRP9 expression was observed in PC tissues than normal tissues, which was negatively correlated with patient prognosis. We found that RRP9 promoted gemcitabine resistance in PC in vivo and in vitro. Mechanistically, RRP9 activated AKT signaling pathway through interacting with DNA binding region of IGF2BP1 in PC cells, thereby promoting PC progression, and inducing gemcitabine resistance through a reduction in DNA damage and inhibition of apoptosis. Treatment with a combination of the AKT inhibitor MK-2206 and gemcitabine significantly inhibited tumor proliferation induced by overexpression of RRP9 in vitro and in vivo. Conclusions Our data reveal that RRP9 has a critical function to induce gemcitabine chemoresistance in PC through the IGF2BP1/AKT signaling pathway activation, which might be a candidate to sensitize PC cells to gemcitabine. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3