25KDa branched polyethylenimine increases interferon-γ production in natural killer cells via improving translation efficiency

Author:

Ko Eun-Su,Choi Seung HeeORCID,Lee Minwook,Park Kyung-Soon

Abstract

Abstract Background Ex vivo cultivation is a promising strategy for increasing the number of NK cells and enhancing their antitumor activity prior to clinical application. Recent studies show that stimulation with 25KDa branched polyethylenimine (25KbPEI) generates NK cells with enhanced antitumor activity. To better understand how 25KbPEI primes NK cells, we explored the mechanism underlying increase in production of IFN-γ. Methods Chemical priming was performed on NK-92MI cells by incubating them with 5 μg/ml of 25KbPEI. The production of IFN-γ was evaluated by RT-qPCR, ELISA, and Flow cytometry. By evaluating the effect of pharmacological inhibition of ERK/mTOR-eIF4E signaling pathways on IFN-γ translation, the function of these signaling pathways in IFN-γ translation was examined. To comprehend the level of 25KbPEI activity on immune-related components in NK cells, RNA sequencing and proteomics analyses were conducted. Results 25KbPEI enhances the production of IFN-γ by NK cells without transcriptional activation. Activation of ERK and mTOR signaling pathways was found to be associated with 25KbPEI-mediated calcium influx in NK cells. The activation of ERK/mTOR signaling was linked to the phosphorylation of 4E-BP1, which resulted in the activation of translation initiation complex and subsequent IFN-γ translation. Analysis of RNA sequencing and proteomics data revealed that the activity of 25KbPEI to improve translation efficiency in NK cells could be extended to additional immune-related molecules. Conclusions This study provides substantial insight into the process by which 25KbPEI primes NK cells. Our data demonstrated that the 25KbPEI mediated activation of ERK/mTOR signaling and subsequent stimulation of eIF4E is the primary mechanism by which the chemical stimulates translation of IFN-γ in NK cells.

Funder

Samsung Research Funding & Incubation Center of Samsung Electronics

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3