Author:
Xia Yuhong,Wang Shan,Sun Yu,Wang Wei,Chang Shijie,Zhang Zhongbo,Zhao Chenghai
Abstract
Abstract
Background
Chemoresistance is associated with tumor relapse and unfavorable prognosis. Multiple mechanisms underlying chemoresistance have been elucidated, including stemness and DNA damage repair. Here, the involvement of the WNT receptor, FZD5, in ovarian cancer (OC) chemoresistance was investigated.
Methods
OC cells were analyzed using in vitro techniques including cell transfection, western blot, immunofluorescence and phalloidin staining, CCK8 assay, colony formation, flowcytometry, real-time PCR, and tumorisphere formation. Pearson correlation analysis of the expression levels of relevant genes was conducted using data from the CCLE database. Further, the behavior of OC cells in vivo was assessed by generation of a mouse xenograft model.
Results
Functional studies in OC cells showed that FZD5 contributes to epithelial phenotype maintenance, growth, stemness, HR repair, and chemoresistance. Mechanistically, FZD5 modulates the expression of ALDH1A1, a functional marker for cancer stem-like cells, in a β-catenin-dependent manner. ALDH1A1 activates Akt signaling, further upregulating RAD51 and BRCA1, to promote HR repair.
Conclusions
Taken together, these findings demonstrate that the FZD5-ALDH1A1-Akt pathway is responsible for OC cell survival, and targeting this pathway can sensitize OC cells to DNA damage-based therapy.
Funder
National Natural Science Foundation of China
Department of Education of Liaoning Province
Publisher
Springer Science and Business Media LLC