Abstract
Abstract
Background
Colorectal familial adenomatous polyposis (FAP) adenomas exhibit a uniform pathogenetic basis caused by a germline mutation in the adenomatous polyposis gene (APC), but the molecular changes leading to their development are incompletely understood. However, dysregulated apoptosis is known to substantially affect the development of colonic adenomas. One of the key regulatory proteins involved in apoptosis is apoptosis repressor with caspase recruitment domain (ARC).
Methods
The expression of nuclear and cytoplasmic ARC in 212 adenomas from 80 patients was analyzed by immunohistochemistry. We also compared expression levels of ARC with the expression levels of p53, Bcl-2, COX-2, and MMR proteins. Statistical analyses were performed by Spearman’s rank correlation and linear regression test.
Results
ARC was overexpressed in the nuclei and cytoplasm of most FAP adenomas investigated. Cytoplasmic ARC staining was moderately stronger (score 2) in 49.1% (n = 104/212) and substantially stronger (score 3) in 32.5% (n = 69/212) of adenomas compared to non-tumorous colorectal mucosa. In 18.4% (n = 39/212) of adenomas, cytoplasmic ARC staining was equivalent to that in non-tumorous mucosa.
Nuclear expression of ARC in over 75% of cells was present in 30.7% (n = 65/212) of investigated adenomas, and nuclear expression in 10–75% of cells was detected in 62.7% (n = 133/212). ARC expression in under 10% of nuclei was found in 6.6% (n = 14/212) of adenomas.
The correlation between nuclear ARC expression and cytoplasmic ARC expression was highly significant (p = 0.001). Moreover, nuclear ARC expression correlated positively with overexpression of Bcl-2, COX-2 p53 and β-catenin. Cytoplasmic ARC also correlated with overexpression of Bcl-2. Sporadic MMR deficiency was detected in very few FAP adenomas and showed no correlation with nuclear or cytoplasmic ARC.
Conclusions
Our results demonstrated that both cytoplasmic and nuclear ARC are overexpressed in FAP adenomas, thus in a homogenous collective. The highly significant correlation between nuclear ARC and nuclear β-catenin suggested that ARC might be regulated by β-catenin in FAP adenomas. Because of its further correlations with p53, Bcl-2, and COX-2, nuclear ARC might play a substantial role not only in carcinomas but also in precursor lesions.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology,Biochemistry
Reference53 articles.
1. Half E, Bercovich D, Rozen P. Familial adenomatous polyposis. Orphanet J Rare Dis. 2009;4:22.
2. De Rosa M, Scarano MI, Panariello L, Morelli G, Riegler G, Rossi GB, et al. The mutation spectrum of the APC gene in FAP patients from southern Italy: detection of known and four novel mutations. Hum Mutat. 2003;21(6):655–6.
3. Ruschoff J, Heinmoller E, Hartmann A, Buttner R, Rau T. Differential diagnostics of hereditary colorectal cancer syndromes. The role of pathology. Der Pathologe. 2010;31(6):412–22.
4. Leoz ML, Carballal S, Moreira L, Ocana T, Balaguer F. The genetic basis of familial adenomatous polyposis and its implications for clinical practice and risk management. The application of clinical genetics. Appl Clin Genet. 2015;8:95–107.
5. Zhang L, Shay JW. Multiple roles of APC and its therapeutic implications in colorectal cancer. J Natl Cancer Inst. 2017;109(8):dwj332.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献