Interplay of the transcription factor MRTF-A and matrix stiffness controls mammary acinar structure and protrusion formation

Author:

Melcher Marie-Luise,Block Ines,Kropf Karolin,Singh Anurag Kumar,Posern Guido

Abstract

Abstract Background Ongoing differentiation processes characterize the mammary gland during sexual development and reproduction. In contrast, defective remodelling is assumed to be causal for breast tumorigenesis. We have shown recently that the myocardin-related transcription factor A (MRTF-A) is essential for forming regular hollow acinar structures. Moreover, MRTF-A activity is known to depend on the biochemical and physical properties of the surrounding extracellular matrix. In this study we analysed the mutual interaction of different matrix stiffnesses and MRTF-A activities on formation and maintenance of mammary acini. Methods Human MCF10A acini and primary mature organoids isolated from murine mammary glands were cultivated in 3D on soft and stiff matrices (200–4000 Pa) in conjunction with the Rho/MRTF/SRF pathway inhibitor CCG-203971 and genetic activation of MRTF-A. Results Three-dimensional growth on stiff collagen matrices (> 3000 Pa) was accompanied by increased MRTF-A activity and formation of invasive protrusions in acini cultures of human mammary MCF10A cells. Differential coating and synthetic hydrogels indicated that protrusion formation was attributable to stiffness but not the biochemical constitution of the matrix. Stiffness-induced protrusion formation was also observed in preformed acini isolated from murine mammary glands. Acinar outgrowth in both the MCF10A acini and the primary organoids was partially reverted by treatment with the Rho/MRTF/SRF pathway inhibitor CCG-203971. However, genetic activation of MRTF-A in the mature primary acini also reduced protrusion formation on stiff matrices, whilst it strongly promoted luminal filling matrix-independently. Conclusion Our results suggest an intricate crosstalk between matrix stiffness and MRTF-A, whose activity is required for protrusion formation and sufficient for luminal filling of mammary acini.

Funder

Martin Luther University

Deutsche Forschungsgemeinschaft

Martin-Luther-Universität Halle-Wittenberg

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3