Acute myeloid leukemia-derived exosomes deliver miR-24-3p to hinder the T-cell immune response through DENN/MADD targeting in the NF-κB signaling pathways

Author:

Otmani Khalid,Rouas Redouane,Lagneaux Laurence,Krayem Mohammad,Duvillier Hugues,Berehab Mimoune,Lewalle Philippe

Abstract

Abstract Background microRNAs (miRNAs) are known as potent gene expression regulators, and several studies have revealed the prognostic value of miRNAs in acute myeloid leukemia (AML) patient survival. Recently, strong evidence has indicated that miRNAs can be transported by exosomes (EXOs) from cancer cells to recipient immune microenvironment (IME) cells. Results We found that AML blast-released EXOs enhance CD3 T-cell apoptosis in both CD4 and CD8 T cells. We hypothesized that miRNAs present in EXOs are key players in mediating the changes observed in AML T-cell survival. We found that miR-24-3p, a commonly overexpressed miRNA in AML, was present in released EXOs, suggesting that EXO-miR-24-3p was linked to the increased miR-24-3p levels detected in isolated AML T cells. These results were corroborated by ex vivo-generated miR-24-3p-enriched EXOs, which showed that miR-24-3p-EXOs increased apoptosis and miR-24-3p levels in T cells. We also demonstrated that overexpression of miR-24-3p increased T-cell apoptosis and affected T-cell proliferation by directly targeting DENN/MADD expression and indirectly altering the NF-κB, p-JAK/STAT, and p-ERK signaling pathways but promoting regulatory T-cell (Treg) development. Conclusions These results highlight a mechanism through which AML blasts indirectly impede T-cell function via transferred exosomal miR-24-3p. In conclusion, by characterizing the signaling network regulated by individual miRNAs in the leukemic IME, we aimed to discover new nonleukemic immune targets to rescue the potent antitumor function of T cells against AML blasts.

Funder

This work was funded by the "Association Jules Bordet

Fondation Lambeau-Marteaux

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3