Jak2/STAT6/c-Myc pathway is vital to the pathogenicity of Philadelphia-positive acute lymphoblastic leukemia caused by P190BCR-ABL

Author:

Qin Run,Wang Teng,He Wei,Wei Wei,Liu Suotian,Gao Miao,Huang Zhenglan

Abstract

AbstractBackgroundThe Philadelphia chromosome encodes the BCR-ABL fusion protein, which has two primary subtypes, P210 and P190. P210 and P190 cause Philadelphia-positive chronic myeloid leukemia (Ph+ CML) and Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL), respectively. The Ph+ ALL is more malignant than Ph+ CML in disease phenotype and progression. This implies the key pathogenic molecules and regulatory mechanisms caused by BCR-ABL in two types of leukemia are different. It is reported that STAT6 was significantly activated only in P190 transformed cells. However, the potential role and the mechanism of STAT6 activation in Ph+ ALL and its activation mechanism by P190 are still unknown.MethodsThe protein and mRNA levels of STAT6, c-Myc, and other molecules were measured by western blot and quantitative real-time PCR. The STAT6 inhibitor AS1517499 was used to specifically inhibit p-STAT6. The effect of p-STAT6 inhibition on Ph+ CML and Ph+ ALL cells was identified by CCK-8 and FCM assay. Dual luciferase reporter and ChIP assay were performed to confirm the direct binding between STAT6 and c-Myc. The impact of STAT6 inhibition on tumor progression was detected in Ph+ CML and Ph+ ALL mouse models.ResultsOur results demonstrated that P210 induced CML-like disease, and P190 caused the more malignant ALL-like disease in mouse models. STAT6 was activated in P190 cell lines but not in P210 cell lines. Inhibition of STAT6 suppressed the malignancy of Ph+ ALL in vitro and in vivo, whereas it had little effect on Ph+ CML. We confirmed that p-STAT6 regulated the transcription of c-Myc, and STAT6 was phosphorylated by p-Jak2 in P190 cell lines, which accounted for the discrepant expression of p-STAT6 in P190 and P210 cell lines. STAT6 inhibition synergized with imatinib in Ph+ ALL cells.ConclusionsOur study suggests that STAT6 activation plays an essential role in the development of Ph+ ALL and may be a potential therapeutic target in Ph+ ALL.

Funder

Scientific and Technological Research Program of Chongqing Municipal Education Commission, China

the Natural Science Foundation of Chongqing, China

Scientific research and Cultivation Project of College of Laboratory Medicine, Chongqing Medical University, China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3