Increased susceptibility of irradiated mice to Aspergillus fumigatus infection via NLRP3/GSDMD pathway in pulmonary bronchial epithelia

Author:

Wu Dong-Ming,He Miao,Zhao Yang-Yang,Deng Shi-Hua,Liu Teng,Zhang Ting,Zhang Feng,Wang Yuan-Yi,Xu Ying

Abstract

Abstract Background Aspergillus fumigatus infection is difficult to diagnose clinically and can develop into invasive pulmonary aspergillosis, which has a high fatality rate. The incidence of Aspergillus fumigatus infection has increased die to widespread application of radiotherapy technology. However, knowledge regarding A. fumigatus infection following radiation exposure is limited, and the underlying mechanism remains unclear. In this study, we established a mouse model to explore the effect of radiation on A. fumigatus infection and the associated mechanisms. Methods In this study, a mouse model of A. fumigatus infection after radiation was established by irradiating with 5 Gy on the chest and instilling 5 × 107/ml Aspergillus fumigatus conidia into trachea after 24 h to explore the effect and study its function and mechanism. Mice were compared among the following groups: normal controls (CON), radiation only (RA), infection only (Af), and radiation + infection (RA + Af). Staining analyses were used to detect infection and damage in lung tissues. Changes in protein and mRNA levels of pyroptosis-related molecules were assessed by western blot analysis and quantitative reverse transcription polymerase chain reaction, respectively. Protein concentrations in the serum and alveolar lavage fluid were also measured. An immunofluorescence colocalization analysis was performed to confirm that NLRP3 inflammasomes activated pyroptosis. Results Radiation destroyed the pulmonary epithelial barrier and significantly increased the pulmonary fungal burden of A. fumigatus. The active end of caspase-1 and gasdermin D (GSDMD) were highly expressed even after infection. Release of interleukin-18 (IL-18) and interleukin-1β (IL-1β) provided further evidence of pyroptosis. NLRP3 knockout inhibited pyroptosis, which effectively attenuated damage to the pulmonary epithelial barrier and reduced the burden of A. fumigatus. Conclusions Our findings indicated that the activation of NLRP3 inflammasomes following radiation exposure increased susceptibility to A. fumigatus infection. Due to pyroptosis in lung epithelial cells, it resulted in the destruction of the lung epithelial barrier and further damage to lung tissue. Moreover, we found that NLRP3 knockout effectively inhibited the pyroptosis and reducing susceptibility to A. fumigatus infection and further lung damage. Overall, our results suggest that NLRP3/GSDMD pathway mediated-pyroptosis in the lungs may be a key event in this process and provide new insights into the underlying mechanism of infection.

Funder

the National Natural Science Foundation of China

Disciplinary Construction Innovation Team Foundation of Chengdu Medical College

Sichuan Medical Association

Chengdu Medical College

The First Affiliated Hospital of Chengdu Medical College

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3