Construction and verification of aggressive behavior risk prediction model in stable patients with schizophrenia

Author:

Sun Yujing,Jiang Wenlong,Yu Hong,Zhang Jing,Zhou Yuqiu,Yin Fei,Su Hong,Jia Yannan

Abstract

Abstract Background Among all types of mental disorders, individuals with schizophrenia exhibit the highest frequency of aggressive behavior. This disrupts the healthcare environment and poses threats to family life and social harmony. Present approaches fail to identify individuals with schizophrenia who are predisposed to aggressive behavior. In this study, we aimed to construct a risk prediction model for aggressive behavior in stable patients with schizophrenia, which may facilitate early identification of patients who are predisposed to aggression by assessing relevant factors, enabling the management of high-risk groups to mitigate and prevent aggressive behavior. Methods A convenience sample of stable inpatients with schizophrenia were selected from Daqing Municipal Third Hospital and Chifeng Municipal Anding Hospital from March 2021 to July 2023. A total of 429 patients with stable schizophrenia who met the inclusion criteria were included. A survey was conducted with them using a questionnaire consisting of general information questionnaire, Positive and Negative Symptom Scale, Childhood Trauma Questionnaire-Short Form, Connor-Davidson Resilience Scale and Self-esteem Scale. Patients enrolled in this study were divided into aggressive and non-aggressive groups based on whether there was at least one obvious and recorded personal attack episode (including obvious wounding and self-injurious behavior) following diagnosis. Binary Logistic regression was used to determine the influencing factors, and R software was used to establish a nomogram model for predicting the risk of aggressive behavior. Bootstrap method was used for internal validation of the model, and the validation group was used for external validation. C statistic and calibration curve were used to evaluate the prediction performance of the model. Results The model variables included Age, Duration of disease, Positive symptom, Childhood Trauma, Self-esteem and Resilience. The AUROC of the model was 0.790 (95% CI:0.729–0.851), the best cutoff value was 0.308; the sensitivity was 70.0%; the specificity was 81.4%; The C statistics of internal and external validation were 0.759 (95%CI:0.725–0.814) and 0.819 (95%CI:0.733–0.904), respectively; calibration curve and Brier score showed good fit. Conclusions The prediction model has a good degree of discrimination and calibration, which can intuitively and easily screen the high risk of aggressive behavior in stable patients with schizophrenia, and provide references for early screening and intervention.

Funder

National Natural Science Foundation of China

Humanities and Social Science Fund of Ministry of Education of China

Fundamental Research Funds for the Provincial Universities

Heilongjiang Province philosophy and social science research planning project

Publisher

Springer Science and Business Media LLC

Subject

Psychiatry and Mental health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3