Factors influencing the tendency of residual symptoms in patients with depressive disorders: a longitudinal study

Author:

Li Yuwei,Wang Dong,Fang Jiexin,Zu Si,Xiao Le,Zhu Xuequan,Wang Gang,Hu Yongdong

Abstract

Abstract Background Residual symptoms of depressive disorders are serious health problems. However, the progression process is hardly predictable due to high heterogeneity of the disease. This study aims to: (1) classify the patterns of changes in residual symptoms based on homogeneous data, and (2) identify potential predictors for these patterns. Methods In this study, we conducted a data-driven Latent Class Growth Analysis (LCGA) to identify distinct tendencies of changes in residual symptoms, which were longitudinally quantified using the QIDS-SR16 at baseline and 1/3/6 months post-baseline for depressed patients. The association between baseline characteristics (e.g. clinical features and cognitive functions) and different progression tendencies were also identified. Results The tendency of changes in residual symptoms was categorized into four classes: “light residual symptom decline (15.4%)”, “residual symptom disappears (39.3%)”, “steady residual symptom (6.3%)” and “severe residual symptom decline (39.0%)”. We observed that the second class displayed more favorable recuperation outcomes than the rest of patients. The severity, recurrence, polypharmacy, and medication adherence of symptoms are intricately linked to the duration of residual symptoms’ persistence. Additionally, clinical characteristics including sleep disturbances, depressive moods, alterations in appetite or weight, and difficulties with concentration have been identified as significant factors in the recovery process. Conclusions Our research findings indicate that certain clinical characteristics in patients with depressive disorders are associated with poor recovery from residual symptoms following acute treatment. This revelation holds significant value in the targeted attention to specific patients and the development of early intervention strategies for residual symptoms accordingly.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3