Author:
Nie Lili,Zhao Zeyong,Wen Xiantao,Luo Wei,Ju Tao,Ren Anlian,Wu Binbin,Li Jing
Abstract
Abstract
Background
Previous studies of brain structure in methamphetamine users have yielded inconsistent findings, possibly reflecting small sample size and inconsistencies in duration of methamphetamine abstinence as well as sampling and analyses methods. Here we report on a relatively large sample of abstinent methamphetamine users at various stages of long-term abstinence.
Methods
Chronic methamphetamine users (n = 99), abstinent from the drug ranging from 12 to 621 days, and healthy controls (n = 86) received T1-weighted structural magnetic resonance imaging brain scans. Subcortical and cortical gray-matter volumes and cortical thickness were measured and the effects of group, duration of abstinence, duration of methamphetamine use and onset age of methamphetamine use were investigated using the Freesurfer software package.
Results
Methamphetamine users did not differ from controls in gray-matter volumes, except for a cluster in the right lateral occipital cortex where gray-matter volume was smaller, and for regions mainly in the bilateral superior frontal gyrui where thickness was greater. Duration of abstinence correlated positively with gray-matter volumes in whole brain, bilateral accumbens nuclei and insulae clusters, and right hippocampus; and with thickness in a right insula cluster. Duration of methamphetamine use correlated negatively with gray-matter volume and cortical thickness of a cluster in the right lingual and pericalcarine cortex.
Conclusions
Chronic methamphetamine use induces hard-to-recover cortical thickening in bilateral superior frontal gyri and recoverable volumetric reduction in right hippocampus, bilateral accumbens nuclei and bilateral cortical regions around insulae. These alternations might contribute to methamphetamine-induced neurocognitive disfunctions and reflect a regional specific response of the brain to methamphetamine.
Funder
National Key Research and Development Program of China
Science and Technology Department of Sichuan Province
Publisher
Springer Science and Business Media LLC
Subject
Psychiatry and Mental health
Reference49 articles.
1. United Nations Office on Drugs and Crime: 2017 Global Synthetic Drugs Assessment. https://wwwunodcorg/documents/scientific/Global_Drugs_Assessment_2017pdf 2017.
2. Halpin LE, Collins SA, Yamamoto BK. Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine. Life Sci. 2014;97(1):37–44.
3. Yu S, Zhu L, Shen Q, Bai X, Di X. Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology. Behav Neurol. 2015;2015:103969.
4. Bjorklund A, Dunnett SB. Dopamine neuron systems in the brain: an update. Trends Neurosci. 2007;30(5):194–202.
5. Seiden LS, Commins DL, Vosmer G, Axt K, Marek G. Neurotoxicity in dopamine and 5-hydroxytryptamine terminal fields: a regional analysis in nigrostriatal and mesolimbic projections. Ann N Y Acad Sci. 1988;537:161–72.