Author:
Kirchebner Johannes,Lau Steffen,Sonnweber Martina
Abstract
Abstract
Background
Escape and absconding, especially in forensic settings, can have serious consequences for patients, staff and institutions. Several characteristics of affected patients could be identified so far, albeit based on heterogeneous patient populations, a limited number of possible factors and basal statistical analyses. The aim of this study was to determine the most important characteristics among a large number of possible variables and to describe the best statistical model using machine learning in a homogeneous group of offender patients with schizophrenia spectrum disorder.
Methods
A database of 370 offender patients suffering from schizophrenia spectrum disorder and 507 possible predictor variables was explored by machine learning. To counteract overfitting, the database was divided into training and validation set and a nested validation procedure was used on the training set. The best model was tested on the validation set and the most important variables were extracted.
Results
The final model resulted in a balanced accuracy of 71.1% (95% CI = [58.5, 83.1]) and an AUC of 0.75 (95% CI = [0.63, 0.87]). The variables identified as relevant and related to absconding/ escape listed from most important to least important were: more frequent forbidden intake of drugs during current hospitalization, more index offences, higher neuroleptic medication, more frequent rule breaking behavior during current hospitalization, higher PANSS Score at discharge, lower age at admission, more frequent dissocial behavior during current hospitalization, shorter time spent in current hospitalization and higher PANSS Score at admission.
Conclusions
For the first time a detailed statistical model could be built for this topic. The results indicate the presence of a particularly problematic subgroup within the group of offenders with schizophrenic spectrum disorder who also tend to escape or abscond. Early identification and tailored treatment of these patients could be of clinical benefit.
Publisher
Springer Science and Business Media LLC
Subject
Psychiatry and Mental health
Reference90 articles.
1. Chaplin E, Hearn D, Ndegwa D, Norman P, Hammond N. Developing the leave/abscond risk assessment (LARA) from the absconding literature: an aide to risk management in secure services. Adv Ment Heal Intellect Disabil. 2012;6:280–90.
2. Mezey G, Durkin C, Dodge L, White S. Never ever? Characteristics, outcomes and motivations of patients who abscond or escape: a 5-year review of escapes and absconds from two medium and low secure forensic units. Crim Behav Ment Health. 2015;25:440–50.
3. Cullen AE, Jewell A, Tully J, Coghlan S, Dean K, Fahy T. A prospective cohort study of absconsion incidents in forensic psychiatric settings: can we identify those at high-risk? PLoS One. 2015;10:e0138819.
4. Stewart D, Bowers L. Absconding from psychiatric hospitals: a literature review. London Inst Psychiatry King’s Coll London. 2010;1-43.
5. James R, Maude P. A focus on absconding in mental health: a review of the literature. Int J Heal Sci Res. 2015;5:400–9.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献