Transdiagnostic symptom subtypes across autism spectrum disorders and attention deficit hyperactivity disorder: validated by measures of neurocognition and structural connectivity

Author:

Zhang Manxue,Huang Yan,Jiao Jian,Yuan Danfeng,Hu Xiao,Yang Pingyuan,Zhang Rui,Wen Liangjian,Situ Mingjing,Cai Jia,Sun Xueli,Guo Kuifang,Huang Xia,Huang Yi

Abstract

Abstract Backgrounds Autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD) are neurodevelopmental disorders that exhibit within-disorder heterogeneity and cross-disorder phenotypic overlap, thus suggesting that the current disease categories may not fully represent the etiologic essence of the disorders, especially for highly comorbid neurodevelopmental disorders. In this study, we explored the subtypes of a combined sample of ASD and ADHD by integrating measurements of behavior, cognition and brain imaging. Methods A total of 164 participants, including 65 with ASD, 47 with ADHD, and 52 controls, were recruited. Unsupervised machine learning with an agglomerative hierarchical clustering algorithm was used to identify transdiagnostic symptom clusters. Neurocognition and brain structural connectivity measurements were used to assess symptom clusters. Mediation analysis was used to explore the relationship between transdiagnostic symptoms, neurocognition and brain structural connectivity. Results We identified three symptom clusters that did not fall within the diagnostic boundaries of DSM. External measurements from neurocognition and neuroimaging domains supported distinct profiles, including fine motor function, verbal fluency, and structural connectivity in the corpus callosum between these symptom clusters, highlighting possible biomarkers for ASD and ADHD. Additionally, fine motor function was shown to mediate the relationship between the corpus callosum and perseveration symptoms. Conclusions In this transdiagnostic study on ASD and ADHD, we identified three subtypes showing meaningful associations between symptoms, neurocognition and brain white matter structural connectivity. The fine motor function and structural connectivity of corpus callosum might be used as biomarkers for neurodevelopmental disorders with social skill symptoms. The results of this study highlighted the importance of precise phenotyping and further supported the effects of fine motor intervention on ASD and ADHD.

Funder

National Key Scientific Instrument and Equipment Development Projects of China

clinical research incubation project at huaxi hospital, sichuan university

Publisher

Springer Science and Business Media LLC

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3