Minocycline and antipsychotics inhibit inflammatory responses in BV-2 microglia activated by LPS via regulating the MAPKs/ JAK-STAT signaling pathway

Author:

Long Yujun,Wang Ying,Shen Yidong,Huang Jing,Li Yamin,Wu Renrong,Zhao Jingping

Abstract

Abstract Background Abnormal activation of microglia is involved in the pathogenesis of schizophrenia. Minocycline and antipsychotics have been reported to be effective in inhibiting the activation of microglia and thus alleviating the negative symptoms of patients with schizophrenia. However, the specific molecular mechanism by which minocycline and antipsychotics inhibit microglial activation is not clear. In this study, we aimed to explore the molecular mechanism of treatment effect of minocycline and antipsychotics on schizophrenia. Methods Microglia cells were activated by lipopolysaccharide (LPS) and further treated with minocycline, haloperidol, and risperidone. Then cell morphology, specific marker, cytokines, and nitric oxide production process, and the proteins in related molecular signaling pathways in LPS-activated microglia were compared among groups. Results The study found that minocycline, risperidone, and haloperidol significantly inhibited morphological changes and reduced the expression of OX-42 protein induced by LPS. Minocycline significantly decreased the production of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and interleukin-1beta (IL-1β). Risperidone also showed significant decrease in the production of IL-6 and TNF-α, while haloperidol only showed significant decrease in the production of IL-6. Minocycline, risperidone, and haloperidol were found to significantly inhibit nitric oxide (NO) expression, but had no effect on inducible nitric oxide synthase (iNOS) expression. Both minocycline and risperidone were effective in decreasing the activity of c‑Jun N‑terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) in the mitogen-activated protein kinases (MAPKs) signal pathway. Additionally, minocycline and risperidone were found to increase the activity of phosphorylated-p38. In contrast, haloperidol only suppressed the activity of ERK. Minocycline also suppressed the activation of janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3), while risperidone and haloperidol only suppressed the activation of STAT3. Conclusions The results demonstrated that minocycline and risperidone exert stronger anti-inflammatory and neuroprotective effects stronger than haloperidol, through MAPKs and Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathways in BV2 cells stimulated with LPS, revealing the underlying mechanisms of minocycline and atypical antipsychotics in the treatment of negative schizophrenia symptoms.

Funder

the Fundamental Research Funds for the Central Universities of Central South University

the National Natural Science Foundation of China

Key-Area Research and Development Program of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Psychiatry and Mental health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3