Abstract
Abstract
Background
Borna disease virus 1 (BoDV-1) is a non-segmented, negative-strand RNA virus that persistently infects mammals including humans. BoDV-1 worldwide occurring strains display highly conserved genomes with overlapping genetic signatures between those of either human or animal origin. BoDV-1 infection may cause behavioral and cognitive disturbances in animals but has also been found in human major depression and obsessive–compulsive disorder (OCD). However, the impact of BoDV-1 on memory functions in OCD is unknown.
Method
To evaluate the cognitive impact of BoDV-1 in OCD, event-related brain potentials (ERPs) were recorded in a continuous word recognition paradigm in OCD patients (n = 16) and in healthy controls (n = 12). According to the presence of BoDV-1-specific circulating immune complexes (CIC), they were divided into two groups, namely group H (high) and L (low), n = 8 each. Typically, ERPs to repeated items are characterized by more positive waveforms beginning approximately 250 ms post-stimulus. This “old/new effect” has been shown to be relevant for memory processing. The early old/new effect (ca. 300–500 ms) with a frontal distribution is proposed to be a neural correlate of familiarity-based recognition. The late old/new effect (post-500 ms) is supposed to reflect memory recollection processes.
Results
OCD patients were reported to show a normal early old/new effect and a reduced late old/new effect compared to normal controls. In our study, OCD patients with a high virus load (group H) displayed exactly these effects, while patients with a low virus load (group L) did not differ from healthy controls.
Conclusion
These results confirmed that OCD patients had impaired memory recollection processes compared to the normal controls which may to some extent be related to their BoDV-1 infection.
Funder
Medizinischen Hochschule Hannover
Medizinische Hochschule Hannover (MHH)
Publisher
Springer Science and Business Media LLC
Subject
Psychiatry and Mental health
Reference120 articles.
1. American Psychiatric Association.: Diagnostic and statistical manual of mental disorders: DSM-IV, 4th edn. Washington, DC: American Psychiatric Association; 1994.
2. Swedo SE, Schapiro MB, Grady CL, Cheslow DL, Leonard HL, Kumar A, Friedland R, Rapoport SI, Rapoport JL. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Arch Gen Psychiatry. 1989;46(6):518–23.
3. Schmidtke K, Schorb A, Winkelmann G, Hohagen F. Cognitive frontal lobe dysfunction in obsessive-compulsive disorder. Biol Psychiatry. 1998;43(9583000):666–73.
4. Rauch SL. Neuroimaging and neurocircuitry models pertaining to the neurosurgical treatment of psychiatric disorders. Neurosurg Clin N Am. 2003;14(2):213–23 vii-viii.
5. Rosenberg DR, MacMillan SN, Moore GJ. Brain anatomy and chemistry may predict treatment response in paediatric obsessive–compulsive disorder. Int J Neuropsychopharmacol. 2001;4(2):179–90.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献