Disrupted topological organization of functional brain networks in Alzheimer’s disease patients with depressive symptoms

Author:

Guo Zhongwei,Liu Kun,Li Jiapeng,Zhu Haokai,Chen Bo,Liu Xiaozheng

Abstract

Abstract Background Depression is a common symptom of Alzheimer’s disease (AD), but the underlying neural mechanism is unknown. The aim of this study was to explore the topological properties of AD patients with depressive symptoms (D-AD) using graph theoretical analysis. Methods We obtained 3-Tesla rsfMRI data from 24 D-AD patients, 20 non-depressed AD patients (nD-AD), and 20 normal controls (NC). Resting state networks were identified using graph theory analysis. ANOVA with a two-sample t-test post hoc analysis in GRETNA was used to assess the topological measurements. Results Our results demonstrate that the three groups show characteristic properties of a small-world network. NCs showed significantly larger global and local efficiency than D-AD and nD-AD patients. Compared with nD-AD patients, D-AD patients showed decreased nodal centrality in the pallidum, putamen, and right superior temporal gyrus. They also showed increased nodal centrality in the right superior parietal gyrus, the medial orbital portion of the right superior frontal gyrus, and the orbital portion of the right superior frontal gyrus. Compared with nD-AD patients, NC showed decreased nodal betweenness in the right superior temporal gyrus, and increased nodal betweenness in medial orbital part of the right superior frontal gyrus. Conclusions These results indicate that D-AD is associated with alterations of topological structure. Our study provides new insights into the brain mechanisms underlying D-AD.

Publisher

Springer Science and Business Media LLC

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3