Evidence-based Shared-Decision-Making Assistant (SDM-assistant) for choosing antipsychotics: protocol of a cluster-randomized trial in hospitalized patients with schizophrenia

Author:

Siafis SpyridonORCID,Bursch Nicola,Müller Katharina,Schmid Lisa,Schuster Florian,Waibel Jakob,Huynh Tri,Matthes Florian,Rodolico Alessandro,Brieger Peter,Bühner Markus,Heres Stephan,Leucht Stefan,Hamann Johannes

Abstract

Abstract Background Choosing an antipsychotic medication is an important medical decision in the treatment of schizophrenia. This decision requires risk-benefit assessments of antipsychotics, and thus, shared-decision making between physician and patients is strongly encouraged. Although the efficacy and side-effect profiles of antipsychotics are well-established, there is no clear framework for the communication of the evidence between physicians and patients. For this reason, we developed an evidence-based shared-decision making assistant (SDM-assistant) that presents high-quality evidence from network meta-analysis on the efficacy and side-effect profile of antipsychotics and can be used as a basis for shared-decision making between physicians and patients when selecting antipsychotic medications. Methods The planned matched-pair cluster-randomised trial will be conducted in acute psychiatric wards (n = 14 wards planned) and will include adult inpatients with schizophrenia or schizophrenia-like disorders (N = 252 participants planned). On the intervention wards, patients and their treating physicians will use the SDM-assistant, whenever a decision on choosing an antipsychotic is warranted. On the control wards, antipsychotics will be chosen according to treatment-as-usual. The primary outcome will be patients’ perceived involvement in the decision-making during the inpatient stay as measured with the SDM-Q-9. We will also assess therapeutic alliance, symptom severity, side-effects, treatment satisfaction, adherence, quality of life, functioning and rehospitalizations as secondary outcomes. Outcomes could be analysed at discharge and at follow-up after three months from discharge. The analysis will be conducted per-protocol using mixed-effects linear regression models for continuous outcomes and logistic regression models using generalised estimating equations for dichotomous outcomes. Barriers and facilitators in the implementation of the intervention will also be examined using a qualitative content analysis. Discussion This is the first trial to examine a decision assistant specifically designed to facilitate shared-decision making for choosing antipsychotic medications, i.e., SDM-assistant, in acutely ill inpatients with schizophrenia. If the intervention can be successfully implemented, SDM-assistant could advance evidence-based medicine in schizophrenia by putting medical evidence on antipsychotics into the context of patient preferences and values. This could subsequently lead to a higher involvement of the patients in decision-making and better therapy decisions. Trial registration German Clinical Trials Register (ID: DRKS00027316, registration date 26.01.2022).

Funder

Gemeinsame Bundesausschuss

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3