Convergence of the deep BSDE method for coupled FBSDEs

Author:

Han Jiequn,Long Jihao

Abstract

Abstract The recently proposed numerical algorithm, deep BSDE method, has shown remarkable performance in solving high-dimensional forward-backward stochastic differential equations (FBSDEs) and parabolic partial differential equations (PDEs). This article lays a theoretical foundation for the deep BSDE method in the general case of coupled FBSDEs. In particular, a posteriori error estimation of the solution is provided and it is proved that the error converges to zero given the universal approximation capability of neural networks. Numerical results are presented to demonstrate the accuracy of the analyzed algorithm in solving high-dimensional coupled FBSDEs.

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Medicine

Reference39 articles.

1. Antonelli, F.: Backward-forward stochastic differential equations. Ann. Appl. Probab. 3, 777–793 (1993).

2. Arora, R., Basu, A., Mianjy, P., Mukherjee, A.: Understanding deep neural networks with rectified linear units (2018). In: Proceedings of the International Conference on Learning Representations (ICLR). https://openreview.net/forum?id=B1J_rgWRW .

3. Barron, A. R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans Inf. Theory. 39(3), 930–945 (1993).

4. Beck, C., E, W., Jentzen, A.: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations (2017). arXiv preprint arXiv:170905963.

5. Bellman, R. E.: Dynamic Programming. Princeton University Press, USA (1957).

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Convergence of the deep BSDE method for stochastic control problems formulated through the stochastic maximum principle;Mathematics and Computers in Simulation;2025-01

2. Deep learning solution of optimal reinsurance‐investment strategies with inside information and multiple risks;Mathematical Methods in the Applied Sciences;2024-09-03

3. A deep learning method for solving multi-dimensional coupled forward–backward doubly SDEs;Computers & Mathematics with Applications;2024-09

4. Solving PDEs on unknown manifolds with machine learning;Applied and Computational Harmonic Analysis;2024-07

5. Algorithm Development Using Artificial Intelligence: An Overview;2024 23rd International Symposium on Electrical Apparatus and Technologies (SIELA);2024-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3