1. Antonelli, F.: Backward-forward stochastic differential equations. Ann. Appl. Probab. 3, 777–793 (1993).
2. Arora, R., Basu, A., Mianjy, P., Mukherjee, A.: Understanding deep neural networks with rectified linear units (2018). In: Proceedings of the International Conference on Learning Representations (ICLR).
https://openreview.net/forum?id=B1J_rgWRW
.
3. Barron, A. R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans Inf. Theory. 39(3), 930–945 (1993).
4. Beck, C., E, W., Jentzen, A.: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations (2017). arXiv preprint arXiv:170905963.
5. Bellman, R. E.: Dynamic Programming. Princeton University Press, USA (1957).