Geometry, reactivity descriptors, light harvesting efficiency, molecular radii, diffusion coefficient, and oxidation potential of RE(I)(CO)3Cl(TPA-2, 2′-bipyridine) in DSSC application: DFT/TDDFT study

Author:

Tegegn Dereje Fedasa,Belachew Habtamu Zewude,Wirtu Shuma Fayera,Salau Ayodeji Olalekan

Abstract

AbstractDye-sensitized solar cells (DSSCs) are an excellent alternative solar cell technology that is cost-effective and environmentally friendly. The geometry, reactivity descriptors, light-harvesting efficiency, molecular radii, diffusion coefficient, and excited oxidation state potential of the proposed complex were investigated. The calculations in this study were performed using DFT/TDDFT method with B3LYP functional employed on the Gaussian 09 software package. The calculations were used the 6–311 +  + G(d, p) basis set for the C, H, N, O, Cl atoms and the LANL2DZ basis set for the Re atom, with the B3LYP functional.. The balance of hole and electron in this complex has increased the efficiency and lifetime of DSSCs for photovoltaic cell applications. The investigated compound shows that the addition of the TPA substituent marginally changes the geometric structures of the 2, 2′-bipyridine ligand in the T1 state. As EDsubstituents were added to the compound, the energy gap widened and moved from ELUMO (− 2.904 eV) (substituted TPA) to ELUMO (− 3.122 eV) (unsubstituted). In the studying of solvent affects; when the polarity of the solvent decreases, red shifts appears in the lowest energy an absorption and emission band. Good light-harvesting efficiency, molecular radii, diffusion coefficient, excited state oxidation potential, emission quantum yield, and DSSC reorganization energy, the complex is well suited for use as an emitter in dye-sensitized solar cells. Among the investigated complexes mentioned in literature, the proposed complex was a suitable candidate for phosphorescent DSSC.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3