Synthesis, design, biological evaluation, and computational analysis of some novel uracil-azole derivatives as cytotoxic agents

Author:

Emami Leila,Zare Fateme,Khabnadideh Soghra,Rezaei Zahra,Sabahi Zahra,Zare Gheshlaghi Saman,Behrouz Marzieh,Emami Mina,Ghobadi Zahra,Madadelahi Ardekani Sedighe,Barzegar Fatemeh,Ebrahimi Ali,Sabet Razieh

Abstract

AbstractThe design and synthesis of novel cytotoxic agents is still an interesting topic for medicinal chemistry researchers due to the unwanted side effects of anticancer drugs. In this study, a novel series of uracil–azole hybrids were designed and synthesized. The cytotoxic activity, along with computational studies: molecular docking, molecular dynamic simulation, density functional theory, and ADME properties were also, evaluated. The compounds were synthesized by using 3-methyl-6-chlorouracil as the starting material. Cytotoxicity was determined using MTT assay in the breast carcinoma cell line (MCF-7) and Hepatocellular carcinoma cell line (HEPG-2). These derivatives demonstrated powerful inhibitory activity against breast and hepatocellular carcinoma cell lines in comparison to Cisplatin as positive control. Among these compounds, 4j displayed the best selectivity profile and good activity with IC50 values of 16.18 ± 1.02 and 7.56 ± 5.28 µM against MCF-7 and HEPG-2 cell lines respectively. Structure–activity relationships revealed that the variation in the cytotoxic potency of the synthesized compounds was affected by various substitutions of benzyl moiety. The docking output showed that 4j bind well in the active site of EGFR and formed a stable complex with the EGFR protein. DFT was used to investigate the reactivity descriptors of 4a and 4j. The outputs demonstrated that these uracil–azole hybrids can be considered as potential cytotoxic agents.

Funder

Shiraz Transplant Research Center, Shiraz University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3