Author:
Hussein Ahmed K.,Elbeih Ahmed,Mokhtar Mohamed,Abdelhafiz Mahmoud
Abstract
AbstractDevelopment of ultra-fine fiber technology and nano-sized materials are widely taking place to enhance the characteristic of different materials. In our study, a newly developed technique was used to produce improvised nano energetic fibers with the exploitation of cis‐1,3,4,6‐Tetranitrooctahydroimidazo‐[4,5‐d] imidazole (BCHMX) to spin in a polystyrene nanofiber membrane. Scanning electron microscopy (SEM) showed the synthesized nanofibrous polystyrene (PS)/BCHMX sheets with clear and continual fiber were imaged with scanning electron microscopy (SEM). Characterization of the produced nanofiber was examined by Fourier Transform Infrared (FTIR), and X-ray diffractometer (XRD). Explosive sensitivity was also evaluated by both BAM impact and friction apparatus. Thermal behavior for the synthesized PS/BCHMX fiber and the pure materials were also investigated by thermal gravimetric analysis (TGA). The results show enhancement in the fabrication of nano energetic fibers with a size of 200–460 nm. The TG confirms the high weight percentage of BCHMX which reaches 60% of the total mass. PS/BCHMX fiber was confirmed with the XRD, FTIR spectrum. Interestingly, XRD sharp peaks showed the conversion of amorphous PS via electrospinning into crystalline shape regarding the applied high voltage. The synthesized PS/BCHMX nanofiber was considered insensitive to the mechanical external stimuli; more than 100 J impact energy and > 360 N initiation force as friction stimuli. PS/BCHMX is considering a candidate tool to deal with highly sensitive explosives safely and securely for explosives detection training purposes.
Funder
Military Technical College
Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. Shekh MI, Patel NN, Patel KP, Patel RM, Ray A. Nano silver-embedded electrospun nanofiber of poly (4-chloro-3-methylphenyl methacrylate): use as water sanitizer. Environ Sci Pollut Res. 2017;24:5701.
2. Nagy ZK, Balogh A, Démuth B, Pataki H, Vigh T, Szabó B, Molnár K, Schmidt BT, Horák P, Marosi G. High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole. Int J Pharm. 2015;480:137.
3. Merritt S, Exner A, a., Lee Z, Von Recum H a. Electrospinning and Jmaging. Adv Eng Mater. 2012;14:B266.
4. Bera B. Literature review on electrospinning process (a fascinating fiber fabrication technique). Imp J Interdiscip Res. 2016;2:972.
5. Tuah KA, Chin S-F, Pang S-C. Fabrication of drug-loaded starch-based nanofibers via electrospinning technique. Biointerface Res Appl Chem. 2021;11(3):10801.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献