Kinetic control concept for the diffusion processes of paracetamol active molecules across affinity polymer membranes from acidic solutions

Author:

Tarhouchi SanaeORCID,Louafy Rkia,El Atmani El Houssine,Hlaïbi Miloudi

Abstract

Abstract Background Paracetamol compound remains the most used pharmaceutical as an analgesic and antipyretic for pain and fever, often identified in aquatic environments. The elimination of this compound from wastewater is one of the critical operations carried out by advanced industries. Our work objective was to assess studies based on membrane processes by using two membranes, polymer inclusion membrane and grafted polymer membrane containing gluconic acid as an extractive agent for extracting and recovering paracetamol compound from aqueous solutions. Result The elaborated membrane characterizations were assessed using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Kinetic and thermodynamic models have been applied to determine the values of macroscopic (P and J0), microscopic (D* and Kass), activation and thermodynamic parameters (Ea, ΔH#, ΔS#, ΔH#diss, and ΔH#th). All results showed that the PVA–GA was more performant than its counterpart GPM–GA, with apparent diffusion coefficient values (107D*) of 41.807 and 31.211 cm2 s−1 respectively, at T = 308 K. In addition, the extraction process for these membranes was more efficient at pH = 1. The relatively low values of activation energy (Ea), activation association enthalpy (ΔHass), and activation dissociation enthalpy (ΔHdiss) have indicated a kinetic control for the oriented processes studied across the adopted membranes much more than the energetic counterpart. Conclusion The results presented for the quantification of oriented membrane process ensured clean, sustainable, and environmentally friendly methods for the extraction and recovery of paracetamol molecule as a high-value substance.

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3