Application of a novel deep eutectic solvent modified carbon nanotube for pipette-tip micro solid phase extraction of 6-mercaptopurine

Author:

Raisi Leila,Hashemi Sayyed Hossein,Jamali Keikha Ahmad,Kaykhaii Massoud

Abstract

Abstract Background 6-mercaptopurine (6-MP) is a chemotherapy drug mainly used to treat leukemia. It is a persistent organic pollutant and can remain in the environment for a long period of time. The presence of 6-MP in the environment poses a number of hazards and needs to be assessed to monitor its potential risk to human health and the environment. However, due to its trace amount in complicated matrices, a clean-up and preconcentration step before its determination is compulsory. Results As a highly efficient adsorbent for the extrication of 6-mercaptopurine (6-MP), a novel carbon nanotube doped with camphor: decanoic acid deep eutectic solvent was synthesized and applied as a packing material for the pipette-tip micro solid phase extraction sorbent of 6-MP from tap, wastewater and seawater samples before its spectrophotometric determination. Characteristics and structure of this adsorbent was fully investigated. Factors affecting extraction, including type and volume of the eluent, ionic strength and pH of the sample solution, amount of adsorbent, and number of extraction and elution cycles were optimized using one-factor-at-a-time and response surface methodologies. The method was found to be linear in the range of 1 to 1000 µg/L with a limit of detection and quantification of 0.2 and 0.7 µg/L, respectively. Reproducibility as relative standard deviation was better than 4.6%. Conclusion Application of deep eutectic solvent modified carbon nanotube indicated suitable microextraction results and good potential for rapid extraction of trace amounts of 6-MP from different aqueous samples. The amount of sample required for the analysis was less than 10 mL and only 1.5 mg of the adsorbent was used. The total analysis time, including extraction was less than 15 min and the adsorbent could be used for at least 10 times, without significantly losing its adsorption ability. Compared to using unmodified usual carbon nanotubes, deep eutectic solvent doped carbon nanotubes showed 19.8% higher extraction ability.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3