Kinetics study of anodic electrophoretic deposition for polytetrafluoroethylene (PTFE) coatings on AZ31 magnesium alloy

Author:

Xiang Qing,Qin Jiyao,Qin Taihong,Chen Lu,Zhang Daixiong

Abstract

AbstractElectrophoretic deposition (EPD) coating has become a hot topic due to its simple experiment, wide application, and wide material range. In this study, the PTFE coating was successfully prepared by electrophoretic deposition through the systematic study of electrophoretic deposition kinetics. In particular, in the dispersion system with ethanol as solvent, Nafion and NaOH were simultaneously added as additives to obtain a beneficial synergistic effect on PTFE electrophoretic deposition. And the best additive scheme is: when the concentration of PTFE was 6 g·L− 1 and the deposition time was increased to 20 min, adding 0.10 g·L− 1 Nafion and 0.10 mM NaOH simultaneously. Compared with the scheme with Nafion being only additive, the addition of NaOH can improve the deposition rate from 0.16 mg·cm− 2 to 0.98 mg·cm− 2, and the deposition rate increases by about 6 times. According to electrophoretic deposition kinetics, there is an obvious critical transition time between linear and parabolic regions in the preparation of the coating. Prolonging the arrival of critical transition time is beneficial to effectively achieve stable growth of the coating in a longer time. It is found that a more ideal additive can not only increase the deposition rate of coating, but also significantly accelerate the arrival of critical transition time. Meanwhile, the deposition voltage also has an important influence on the critical transition time. Increasing the voltage can improve the deposition speed but shorten the critical transition time. Therefore, the application of deposition voltage needs to strike a balance between deposition rate and critical time point. The optimal deposition conditions proposed in this work are: deposition voltage 60 V, deposition time 20 min, additive 0.10 g·L− 1 Nafion and 0.10 mM NaOH.

Funder

Guizhou Provincial Science and Technology Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3