Novel RP-HPLC–DAD approach for simultaneous determination of chlorphenoxamine hydrochloride and caffeine with their related substances

Author:

Ashraf Ahmed,ElDin Norhan Badr,Rostom Yasmin,El-Zeany Badr A.,Sedik Ghada A.

Abstract

AbstractEnsuring the quality control of active pharmaceutical ingredients is crucial for drug products being introduced into the market. Even for established drugs, it is necessary to maintain a cutting-edge impurity control system. To analyze caffeine and chlorphenoxamine hydrochloride in their binary mixture, as well as theophylline and chlorphenoxamine N-oxide as related substances, a reversed phase-high performance liquid chromatography combined with a diode array detector system was created. The chromatographic separation was conducted using a C18 X-select Waters® column. The mobile phase consisted of 20.0 mM potassium dihydrogen phosphate modified to pH 3 with o-phosphoric acid and methanol. A gradient elution program was adopted at a flow rate of 1.3 mL/min and detected at a wavelength of 222 nm. The present methodology demonstrates a concentration ranging from 2–60, 1–80, 0.5–20 to 0.4–20 µg/mL for chlorphenoxamine hydrochloride, caffeine, chlorphenoxamine N-Oxide and theophylline, respectively. Chlorphenoxamine N-Oxide, being an impurity of chlorphenoxamine was prepared by refluxing intact drug with 5% H2O2 for 24 h at 100 °C. One of the objectives of the analytical community is to promote the adoption of green analysis methods, which involve the development of environmentally friendly techniques. The levels of greenness and whiteness were evaluated using four specific tools: Eco-Scale System, GAPI, AGREE, and RGB tool. Furthermore, we have evaluated the greenness of the analytical method presented and compared its performance and greenness to that of the approach described in the literature. In this study, results from CPX and CAF analysis were compared to those obtained in a previous study. The result shows that there is no notable variation in precision and accuracy. The proposed method was validated in accordance with the requirements of ICH.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3