Development and validation of a novel Spectrofluorimetric method of oral anticoagulant Edoxaban via derivatization with 9-fluorenyl methyl chloroformate: green assessment of the method by Eco-Scale and ComplexGAPI

Author:

Rizk Mohamed,El-Alamin Maha Mahmoud Abou,Elkhalek Ola AbdORCID,Shallan Aliaa I.

Abstract

AbstractA precise, sensitive eco-friendly, simple, rapid, and derivative spectrofluorimetric method was developed to quantify edoxaban tosylate monohydrate in pure form and pharmaceutical dosage form. Sudden death due to pulmonary embolism as a consequence of coronavirus infection (covid-19) is an emerging problem. As a result, the world health organization introduced new guidelines to treat patients with COVID-19 with oral anticoagulants. Edoxaban tosylate monohydrate is an oral anticoagulant that doesn’t require hospitalization after dose adjustment. This spectrofluorimetric method relies on the derivatization by 9-fluorenyl methyl chloroformate at room temperature in borate buffer pH 9.0. After excitation at 265 nm, the product is highly fluorescent at 309 nm. Many experimental factors influencing the reaction's stability and development were thoroughly investigated and optimized. The method validation was evaluated by using ICH guidelines and showed high precision and accuracy with an average percent recovery of 101.46% ± 1.02. The linear range was 5.0–50.0 ng/mL with a correlation coefficient of 0.9999, the LOD was 1.5 ng/mL, and the LOQ was 4.5 ng/mL. The green assessment of the method was achieved utilizing the eco-scale and the Green Analytical Procedure Index. There was no significant difference between the results of the suggested method and those of the reported method according to Statistical analysis.

Funder

Helwan University

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

Reference33 articles.

1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33.

2. Kalyankar GG, Vansiya PH, Bodiwala KB, Lodha SR, Prajapati PB, Ranch KM. Development and validation of spectrophotometric method for the estimation of edoxaban tosylate monohydrate in its synthetic mixture. Am J PharmTech Res. 2018;8(2):296–306.

3. Ravisankar P. Development and validation of UV Spectrophotometric method for the determination of Edoxaban Tosylate Monohydrate in pharmaceutical dosage form. Indian J Res Pharmacy Biotechnol. 2018;6(2):73–8.

4. Kadiri RR, Peraman R, Dakinedi SR. Stability indicating RP-HPLC method for quantification of edoxaban tosylate. Int J Res Pharm Sci. 2018;9(2):314–20.

5. Sankar R, Sankar PR, Eswarudu MM, Krishna PS, Srikanth D, Srinivasa Babu P, et al. Controlling hypertension: a brief review view project a review on step-by-step analytical method validation view project novel validated RP-HPLC method for determination of edoxaban tosylate monohydrate in bulk and its pharmaceutical dosage form. J Pharm Sci Res. 2021;13(5):232–7.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3