A novel heterogeneous acid–base nano-catalyst designed based on graphene oxide for synthesis of spiro-indoline-pyranochromene derivatives

Author:

Khabnadideh Soghra,Khorshidi Khashayar,Amiri-Zirtol Leila

Abstract

AbstractNano graphene oxide/3-aminopyridine has been introduced as a new, efficient and robust heterogeneous organic catalyst for synthesis of spiro-indoline-pyranochromene derivatives. Nano graphene oxide/3-aminopyridine was provided in an easy and green way from GO. Firstly, graphene oxide (GO) was synthesized and then 3-aminopyridine was immobilized with covalent bonds on its surface as a nitrogenous organic compound, in this step we didn’t use any organic or toxic substance. This bonding was easily performed due to the presence and reactivity of the epoxy groups in the GO structure. Because of its vast-surface nano-layers, GO could be effective in appropriate dispersion of 3-aminopyridine on its surface and increasing the catalyst performance. The new catalyst was analysed using different microscopic and spectroscopic techniques such as Fourier-transform infrared (FT-IR), field emission scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Our results showed that the distance between GO plates was increased in the presence of the modifying agent. This is due to the placement of the organic compound between the GO sheets. Finally, the ability of our new nano-catalyst in the synthesis of some spiro-indoline-pyranochromene and dihydropyranochromene derivatives was evaluated and acceptable results were obtained. Eight analogous of spiro-indoline-pyranochromene (4a-4 h) were synthesized in high yields and characterized. Using 3-aminopyridine as an organic and efficient catalyst, its stabilization by a simple method on GO, recycling of the catalyst up to 7 times and obtaining a highly pure product were the points that made the present work more attractive. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3