Thermal stability of levopimaric acid and its oxidation products

Author:

Li Yuanlin,Chen Hongqin,Yan Heng,Xu Yangyong,Tang Jinwen,Wang Runsen,Yan Mengru,Dai Yuqiao,Huang Yongguang,Liu Xiongmin

Abstract

AbstractBiofuels are renewable alternatives to fossil fuels. Levopimaric acid‒base biofuels have attracted increasing attention. However, their stability remains a critical issue in practice. Thus, there is a strong impetus to evaluate the thermal stability of levopimaric acid. Through thermogravimetry (TG) and a custom-designed mini closed pressure vessel test (MCPVT) operating under isothermal and stepped temperature conditions, we investigated thermal oxidation characteristics of levopimaric acid under oxygen atmosphere. Thin-layer chromatography (TLC) and iodimetry were used to measure the hydrogen peroxides generated by levopimaric acid oxidation. A high pressure differential scanning calorimeter (HPDSC) was used to assess hydroperoxide thermal decomposition characteristics. Gas chromatography-mass spectrometry (GC-MS) was used to characterize the oxidation products. The thermal decomposition kinetics of levopimaric acid were thus elucidated, and a high peroxide value was detected in the levopimaric acid. The decomposition heat (QDSC) and exothermic onset temperature (Tonset) of hydroperoxides were 338.75 J g−1 and 375.37 K, respectively. Finally, levopimaric acid underwent a second-stage oxidation process at its melt point (423.15 K), resulting in complex oxidation products. Thermal oxidation of levopimaric acid could yield potential thermal hazards, indicating that antioxidants must be added during levopimaric acid application to protect against such hazardous effects.

Funder

Guizhou Provincial Basic Research Program

Talents Introduction Projects of Guizhou University

‘SRT Plan’ Project of Guizhou University

National Natural Science Foundation of China

Guizhou University Natural Science Special Scientific Research Fund Project

Central Guidance on Local Science and Technology Development Fund of Guizhou Province

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3